Condensed Matter Emulation
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Condensed Matter Cold Atoms
° Disordered d Tunable diSpeI‘SiOIl
° Unknown interactions o Tunable interactions
e Little control o “Perfect” control

e (Clean or controlled disorder
* Engineered Hamiltonians
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These 4 Lectures
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e [Lecture 1:
e Introduction to emulation
e The integer/fractional quantum Hall effect (solid state)
e [ecture 2:
e Emulation of the quantum Hall effect (ultra-cold atoms)
e [ecture 3:
e Coupled Atom Cavity (CAC) systems
e Bose-Hubbard emulation (ultra-cold gases and CAC systems)
e [Lecture 4:
e Fractional Quantum Hall Effect (CAC systems)

e Unconventional superconductivity?
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¢ Condensed matter emulation

e Ultracold atomic gases in optical lattices: mimicking condensed
matter physics and beyond, M. Lewenstein, A. Sanpera, V.
Ahufinger, B. Damski, A. Sen and U. Sen, Advances in Physics
56, 243 (2007)

e Many-body physics with ultracold gases, 1. Bloch, J. Dalibard and
W. Zwerger, Rev. Mod. Phys. 80, 885 (2008)

e Integer/Fractional Quantum Hall effect

e [ntroduction to the fractional quantum Hall effect, S. M. Girvin,
http://www.bourbaphy.fr/girvin.ps
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Equivalence of Physical Systems %

MELBOURNE

m%—i—bz—i—kkx:FCOS(wt) L%+R%+éx:6c08(wt)
ANALOGOUS MECHANICAL & ELECTRICAL QUANTITIES
Mechanical Electrical
X Displacement q Charge
x (v) Velocity q(l) Current
m Mass L Inductance
b Friction R Resistance
1/k Mechanical Compliance Cc Capacitance
F Amplitude of impressed force & Amplitude of impressed emf



H = _te(a) Z (C,]L-L,aCjJ -+ hC) -+ UC(S) Zni,ﬂm,_l

<Z7j> 70-
ANALOGOUS CONDENSED MATTER AND OPTICAL LATTICE QUANTITIES
Condensed Matter Atom-Optical
Carrlers Electron/Holes Fermionic atoms
ee Coulomb charge coupling 5 S-wave scattering length
m, Electron mass m, Atomic mass
U. Coulomb Interaction U, S-wave Interaction
t, Electronic tunneling energy t, Atomic tunneling energy
Lattice Atomic ions Optical standing waves
a.b,c Lattice Constants (A 2o 20/2 Optical wavelength

v Binding energy Vv Lattice depth
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The Hall Effect
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Force on carrier
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Experimental Setup (QHE)
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Experimental Observation (IQHE) =% &
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Electron in Magnetic Field
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Cyclotron frequency Cyclotron radius
e v V2amkE
We — | — RC = — =
m We leB]

Harmonic oscillator analogy
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Quantum Treatment
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Schrodinger Equation

d

[ﬁ (hY — qA(r,1)* + ao(r, 1) | ¥(r,t) = ihth(r, 1
B=VxA= le%

Choice of gauge

A = jB.z (Landau gauge)

A = —iB.y/2+ jB.z/2 (Symmetric gauge)

Physical results independent of gauge
We choose Landau gauge



Landau Gauge
Schrodinger Equation (Landau gauge)

[ . LLIANRC. +V(z>] (r) = Ey(r)
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Drop z-dependence (2DEQG)

Energy

Vector potential independent of y
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Plane wave solutions for y-direction: 1D
Schrodinger Equation



1D Schrodinger Equation

S hE\ 2|
BT + oMW | 2 + B u(x) = eu(x)

Schrodinger Equation for 1D harmonic oscillator
Vertex of parabolic potential displaced by -7k/eB

Energy eigenvalues
enk = (N — 1/2)hw,., where n =1,2,3, ...

Wavetunction

r—axp) —esml
Yok (2, y) < Hyp 1 l e 2% €™ where l, = \/h/|eB.,]
b

The eigenvalues (Landau levels) depend on »n but not k&



[Landau Levels DOS

B=0: 2D electron DOS 1s a constant
IB[>0: 2D electron DOS 1s a series of delta functions

!

Landau Levels (LLs)

Number of states in each LL per unit area
ng =eB/h = B/

Increasing B
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Number of occupied LLs

n2pD

V= —— = 27715712 D
npg
Between LLs (n integer)
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Fermi energy between LLs: low DOS (incompressible)
Within LL high DOS (compressible)
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Confinement

Fermi energy between LLs
l \' Pt:?'nlml ¢
o Edge state transport
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Assumptions: No disorder
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e Scattering between edge states in the same edge
e [s forward hence no effect (exception high currents)
e Scattering between opposing edges
e Very very weak if Fermi energy is between Landau levels

e Surely Fermi energy adjusts to always be in a LL: Why are plateaus
wide?

e Disorder important: localized states between LLs in bulk
e Finite DOS between LLs

e Do not contribute to electrical properties (localized)



The Surprise (FQHE)
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Theoretical Model of FQHE
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e Controlled by Coulomb repulsion between electrons
e [gnore disorder
e Discover the nature of the special many-body correlated state

e Consider symmetric gauge (remember results are gauge independent)

1
A=—rxB
2

e Preserves rotational symmetry

e Consider only Lowest Landau Level (LLL): No interactions

1 2
O = e~ 1177 where 2 = (x + iy) /1y
\/27Tl22mm!
e All the states are degenerate: can have any linear combination
N
U(z,y) = f(,z)e_iv"2 f(z) = H (z — Z;)

J=1




The LLL Many-Body State

Ylz] = flle a2 =l
f1s a polynomial representing the Slater determinant

. with all states occupied
2 particles

(21)°  (22)°

f[z] — (Zl)l (22)1
3 particles

= (21)"(22)" — (22)"(21)" = (22 — 21)
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Lauglin Variational Ansatz

N
Rl =1[E-zm  v=1/m
1<J
To be analytic m must be an integer

To preserve antisymmetry m must be odd
v=111.
3757
In the plasma analogy the electron density 1s
_ b
" m 27l?
Other wave-functions developed to describe more
general states 1n the hierarchy of rational filling
factors at which quantized Hall plateaus were

observed



Plasma Analogy (I)

523 U= mzz —In|z; — ])—I—%Z\zk\Q
m 1<J k
2D system
Q7 r
/ds-E:27TQ E(r)zT gb(r):Q<—ln%)

e Hence, potential energy among a group of objects with charge m 1s
Uy = m? Z (In|z; — 24])
i<j
o Second term 1n U (Poissons Equation)

_v2 —— =2
1 \Z\ TPB



Plasma Analogy (II)

MELBOURNE

2 . m 2
U= Y Clals =5+ Yl

7

Potential energy of interaction Energy of charge m objects
among a group of objects interacting with negative
with charge m background
2 Area containing one ) Background charge
2mly i flux quantum density B/ ¢o
1 1
Neutrality ==——3p 1M + pp = 0 =3 1 = m 272

For a filled LL, with m =1, this 1s the correct answer for the density,
since every single-particle state 1s occupied and there is one state per
flux quantum



Excitation Gap?
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e Every pair of particles has a relative angular momentum greater than
or equal to m

e Because the relative angular momentum of a pair can change only in
discrete (even integer) units it turns out that a hard core, repulsion,
model has an excitation gap

e For example for m = 3, any excitation out of the Laughlin ground
state weakens the nearly i1deal correlations by forcing at least one pair
of particles to have relative angular momentum / instead of 3.

e This costs energy: hence a gap

Magnetic field (T)



Importance
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 Two Nobel Prizes
e IQHE 1985 (Klaus von Klitzing);

e FQHE 1998 (Robert Laughlin, Horst Stormer and Daniel Tsui)

e The value of the resistance at the plateaus only depends on
fundamental constants of physics: electric charge (e) and Planck’s
constant (h)

e [t 1s accurate to 1 part in 100000000

e The IQHE is used as the primary resistance standard (although 1
klitzing (h/e?) is 25,813 Ohms)

e Next Lecture we will examine how to emulate the fractional regime
in BECs.



