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Condensed Matter Emulation

Condensed Matter Cold Atoms

• Disordered

• Unknown interactions 

• Little control

• Tunable dispersion

• Tunable interactions 

• “Perfect” control

• Clean or controlled disorder

• Engineered Hamiltonians



TCMPThese 4 Lectures

• Lecture 1: 

• Introduction to emulation

• The integer/fractional quantum Hall effect (solid state)

• Lecture 2: 

• Emulation of the quantum Hall effect (ultra-cold atoms)

• Lecture 3: 

• Coupled Atom Cavity (CAC) systems

• Bose-Hubbard emulation (ultra-cold gases and CAC systems)   

• Lecture 4:   

• Fractional Quantum Hall Effect (CAC systems)

• Unconventional superconductivity? 



TCMPReference Material

• Condensed matter emulation

•   Ultracold atomic gases in optical lattices: mimicking condensed 
matter physics and beyond, M. Lewenstein, A. Sanpera, V. 
Ahufinger, B. Damski, A. Sen and U. Sen, Advances in Physics 
56, 243 (2007)

•   Many-body physics with ultracold gases, I. Bloch, J. Dalibard and 
W. Zwerger, Rev. Mod. Phys. 80, 885 (2008)

• Integer/Fractional Quantum Hall effect

•   Introduction to the fractional quantum Hall effect, S. M. Girvin, 
http://www.bourbaphy.fr/girvin.ps

http://www.bourbaphy.fr/girvin.ps
http://www.bourbaphy.fr/girvin.ps


TCMPEquivalence of Physical Systems
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TCMPEquivalence of Physical Systems

YBCO superconductor Optical Lattice
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TCMPThe Quantum Hall Effect



TCMPThe Hall Effect

F = −e (E + v ×B) = FE + FM

Force on carrier

Equilibrium

FE = −FM

y-component

Fy = evxBz − eEy = 0J = −nev

Ey = −JxBz

ne

Hall coefficient

RH =
Ey

JxBz

= − 1
ne



TCMPExperimental Setup (QHE)



TCMPExperimental Observation (IQHE)

1
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h
, ν = 1, 2, 3... (Integer)



TCMPElectron in Magnetic Field

Cyclotron frequency
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Cyclotron radius

Rc =
v

ωc
=
√

2mE

|eB|

Harmonic oscillator analogy

V (x) =
1
2
mω2x2



TCMPQuantum Treatment

Schrodinger Equation
�
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ψ(r, t) = i� d

dt
ψ(r, t)

Choice of gauge

B = ∇×A = Bz k̂

A = ĵBzx (Landau gauge)

A = −îBzy/2 + ĵBzx/2 (Symmetric gauge)

Physical results independent of gauge 

We choose Landau gauge



TCMPLandau Gauge

Schrodinger Equation (Landau gauge)

Drop z-dependence (2DEG)

Vector potential independent of y

Plane wave solutions for y-direction: 1D 

Schrodinger Equation
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TCMP1D Schrodinger Equation

Schrodinger Equation for 1D harmonic oscillator
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Vertex of parabolic potential displaced by −�k/eB

Energy eigenvalues
�nk = (n− 1/2)�ωc, where n = 1, 2, 3, ...

Wavefunction

ψnk(x, y) ∝ Hn−1
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The eigenvalues (Landau levels) depend on n but not k



TCMPLandau Levels DOS

B=0: 2D electron DOS is a constant

|B|>0: 2D electron DOS is a series of delta functions

Landau Levels (LLs)

Number of states in each LL per unit area
nB = eB/h = B/φ0



TCMPIQHE



TCMPLandau Levels: Transport

Number of occupied LLs

ν =
n2D

nB
= 2πl2bn2D

Between LLs (n integer)

Bn =
hn2D

en

Fermi energy between LLs: low DOS (incompressible)

Within LL high DOS (compressible)



TCMPConfinement

Hall bar schematicLLs: confined geometry

Fermi energy between LLs

Edge state transport
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TCMPAssumptions: No disorder

• Scattering between edge states in the same edge

• Is forward hence no effect (exception high currents)

• Scattering between opposing edges

• Very very weak if Fermi energy is between Landau levels

• Surely Fermi energy adjusts to always be in a LL: Why are plateaus 
wide?

• Disorder important: localized states between LLs in bulk

• Finite DOS between LLs

• Do not contribute to electrical properties (localized)



TCMPThe Surprise (FQHE)



TCMPTheoretical Model of FQHE

• Controlled by Coulomb repulsion between electrons

• Ignore disorder

• Discover the nature of the special many-body correlated state

• Consider symmetric gauge (remember results are gauge independent)

• Preserves rotational symmetry

• Consider only Lowest Landau Level (LLL): No interactions

• All the states are degenerate: can have any linear combination 
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TCMPThe LLL Many-Body State

ψ[z] = f [z]e−
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f is a polynomial representing the Slater determinant 
with all states occupied

2 particles
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TCMPLauglin Variational Ansatz
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To be analytic m must be an integer

To preserve antisymmetry m must be odd
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In the plasma analogy the electron density is
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Other wave-functions developed to describe more 
general states in the hierarchy of rational filling 
factors at which quantized Hall plateaus were 

observed 



TCMPPlasma Analogy (I)
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• Hence, potential energy among a group of objects with charge m is
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• Second term in U (Poissons Equation)
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TCMPPlasma Analogy (II)

U = m2
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Potential energy of interaction 
among a group of objects 

with charge m

Energy of charge m objects 
interacting with negative 

background

2πl2b
Area containing one 

flux quantum 
Background charge 

density 
B/φ0

Neutrality nm + ρB = 0 n =
1
m

1
2πl2b

For a filled LL, with m =1, this is the correct answer for the density, 
since every single-particle state is occupied and there is one state per 

flux quantum 



TCMPExcitation Gap?

•  Every pair of particles has a relative angular momentum greater than 
or equal to m

•   Because the relative angular momentum of a pair can change only in 
discrete (even integer) units it turns out that a hard core, repulsion, 
model has an excitation gap

•   For example for m = 3, any excitation out of the Laughlin ground 
state weakens the nearly ideal correlations by forcing at least one pair 
of particles to have relative angular momentum 1 instead of 3.

•   This costs energy: hence a gap



TCMPImportance

•   Two Nobel Prizes

•   IQHE 1985 (Klaus von Klitzing); 

•   FQHE 1998 (Robert Laughlin, Horst Stormer and Daniel Tsui)   

•   The value of the resistance at the plateaus only depends on 
fundamental constants of physics: electric charge (e) and Planck’s 
constant (h)

•   It is accurate to 1 part in 100000000

•   The IQHE is used as the primary resistance standard (although 1 
klitzing (h/e2) is 25,813 Ohms)

•   Next Lecture we will examine how to emulate the fractional regime 
in BECs.


