Emulation of Quantum Hall Physics
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e LLL one body states

e Harmonic oscillator

e Rotation

e Landau Levels

e Rotation — Magnetic field
e Rotational Interlude

e Vortex lattice formation

e TF description of rotating condensate
e LLL meanfield description

e LLL wavefunction

e Energy minimization — conditions for meanfield LLL regime
e Highly correlated states

e Laughlin wavefunction — conditions for HCS
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Harmonic oscillator

HO — hw_l_ (CLZ_CL_'_ + CLT_CL_ -+ 1)
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Angular momentum

L, =xzp, —ypz = h (aia+ —al _)

Create and destroy one quantum with positive (negative) circular
polarization and one unit of positive (negative) angular momentum



LLL One Body States (€2 # 0)

Rotating system
Hy=Hy—QL, =lw, +h(w, —Nalay +h(ws+a a_
Eigenvalues
e(ny,n_)=nih(wy —Q)+hn_ (v, +Q)
Landau Levels

()] 5w, =3 FEigenvalues are essentially independent of n+

n. becomes the Landau Level index



LLL One Body States (Q)
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e The excitation energy 1s independent of m forming an inverted
pyramid of states. For each non-negative integer n there are n +1
degenerate angular momentum states (-z ... n, 1n steps of 2)

e The degeneracy is lifted

e States become nearly degenerate again, forming essentially
horizontal rows.
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LLL Physics appropriate when
Q/w; ~1

Energy scales

Gap —>» 2h
P L » pn/ (2hw, ) < 1
Interaction energy =y gn(0) = p

Eigenfunctions of LLL
W O P pim ,—r? /(2d7)
e m =0 represents the vacuum for both circularly polarized modes
e The higher states (m >0) can be written as

Wy X Cme_TZ/@di), where ( = (z + iy)/d



Rotation and Magnetic field
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Synthetic vector potential
gA — M) xr/y gA = MS), (—yi—kx})

B=VxA=20,M/q



Rotational Interlude
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Methods

* condense rotating thermal cloud
e stir with narrow obstacle (laser)
* deform trap elliptically and rotate

Rotation Frequency (2

* Low () —> Long-lived quadrupole oscillations
« 2~ 0.7w; - Vortex lattice formation

- Dynamical instability of quadrupole mode
[A. Ricati et al., PRL 86, 377 (2001); Sinha and Y. Castin, PRL 87, 190402 (2001)]

- Crystallisation insensitive to temperature
[Abo-Shaeer et al., PRL 88, 070409 (2002)]
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Hydrodynamical Model
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Gross Pitaevskil Equation

. 8 h2 2 2 A
zha\lf(r,t) = (—%V + Up(r) + g |¥(r,t)|" — QLZ) U(r,t)
m 2 2 2 2 22
Ur = 5 [(1—e)wia” + (1 +e)wly” +7727)

Mandelung Transformation
— U(r,t) = +/p(r,t)exp[iS(r,1]

dp <«
5 TV le(v—Qxr)= \
ov 1 K2 v2
\ ma—l—V[imv-v—l—UT—l—gp—Qm \/\ﬁ/ﬁ—mv-(QXr) —0
vV = Evg Quantum Pressure =0

Thomas-Fermi Approximation




Stable Solutions
Irrotational Velocity Field
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v =aV(xy)
Using Hydrodynamical Equations
o 4+ (1-20%)a—eQ=0

* o quantifies the deformation of the BEC in the rotating frame
* a solutions may not be stable:

5l i | =L v (7o | i |

Ve =V+QOQXr
« Perturbations are polynomials
* Positive eigenvalues unstable



() Ripple Instability

MELBOURNE

* On upper branch until dynamically unstable
* Density ripples form
* Ripples grow and become unstable



(I) Interbranch Instability
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* On lower branch until no longer a solution
* Tries to deform to stable upper branch
» Unstable quadrupole shape oscillations



(I) Catastrophic Instability

MELBOURNE

Qwy) | 0 005 0.1

e=0.07 £=0.085

* On lower branch until no longer a solution
* Upper branch dynamically unstable
* Rapid, catastrophic shape instability



Experimental Comparison
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I I I < 00O Experimental data of Hodby et al.

o4l "7 Tx~y e Lower bound of lower branch

______ Lower bound of dynamically unstable

— region
% % x Numerical simulations — point where
e | R _ elliptical condensate breaks down
0.6 0.7 0.8

Q ((v)A)

* From static solutions of hydrodynamic equations can determine regimes of vortex
lattice formation

e Using GPE can see three distinct regimes
 Vortex lattice formation is a two dimensional zero temperature effect

* However symmetry must be broken

Instabilities leading to vortex lattice formation in rotating Bose-Einstein condensates,
N. G. Parker, R. M. W. van Bijnen and A. M. Martin, PRA 73, 061603(R) (2006)
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Synthetic gauges 1n BECs
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Synthetic magnetic fields for ultracold neutral atoms, Y.-J. Lin et al., Nature 462, 628 (2009).

Synthetic magneto-hydrodynamics in Bose-Einstein condensates and routes to vortex nucleation, L.B.
Taylor et al., arXiv:1011.43.15.



LLL Condensate Wavefunction
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wLLL _ Z mem _ f(C)e—’l"2/(2di)

m>0

f(¢) H(C—@-)

e f({) vanishes at each of the points {; which are the positions of the
nodes of the condensate wave-function

e The phase of this wave-function increases by 2z whenever { moves in
the positive sense around any of these zeros

e Thus the points ; are precisely the positions of the vortices in the
trial state and minimization with respect to the constants ¢ 1s
effectively the same as minimization with respect to the position of
the vortices



Energy Minimization

THE UNIVERSITY OF
MELBOURNE

2
P 1 1

Q)

1
E[Yrrr] = hQ + /d27“ [Mwi (1 — Z) r WLLL\2 + §QQDWLLL!4]

Unrestricted minimization

\wmm]Q = Nymin (0) (1 _ ﬁ) _ Hmin (1 B r*Mw4 (1 — Q))

Hmin

SaN(1—Q
[hmin = \/ aN( ), where Z = 27d.,



LLL Condition (Unrestricted) %
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Unrestricted minimization!!
What about vortices?



Highly Correlated States (v)
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e At higher rotation frequencies the meanfield LLL regime should
eventually disappear through a quantum phase transition, leading to a
different, highly correlated, manybody ground state.

e For meanfield LLL regime
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Exact Diagonalization (v >v.) %

MELBOURNE

e The equilibrium state 1n the meanfield LLL regime 1s a vortex array
that breaks the rotational symmetry and 1s not an eigenstate of L.

e (Could use exact diagonalisation to study the ground state for
increasing N,

e Studies have investigated different filling fractions, v, from 0.5 to 9.

e Comparison between the meanfield LLL energy and exact
diagonalization show that the meanfield vortex lattice 1s a ground
state for v > v. (ve =6)

e Hence the meanfield LLL regime is valid for (v. =1)




Exact Diagonalization (v < v)

e The groundstates are rotationally symmetric incompressible vortex
liquids that are eigenstates of L.

e They have close similarities to the bosonic analogs of the Jain
sequence of fractional quantum Hall states

e The simplest of these many body ground states is the bosonic
Laughlin state
1N (L2
\IjLaughlz'n (rl, s, .... O( H — Zn 4 Zg |25 |
n<n’

e No off-diagonal long range order and hence no BEC

e The Laughlin state vanishes whenever two particles come together,
enforcing the many-body correlations

e The short range two body potential has zero expectation value 1n this
correlated state

e Strong overlap between exact diagonalization and the Laughlin state
(v =1/2)



Physics of Transition
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e Consider N bosonic particles in a plane, with 2N degrees of freedom

e Vortices appear as the system rotates and the corresponding vortex
coordinates provide N, collective degrees of freedom

e For slowly rotating systems the 2N particle coordinates provide a
convenient description

e In principle, the N, collective vortex degrees of freedom should
reduce the original total 2N degrees of freedom to 2N - N, , but this is
unimportant as long as N, << N

e When N, becomes comparable with N the depletion of the particle
degrees of freedom becomes crucial

e This depletion on the particle degrees of freedom drives the phase
transition to a wholly new ground state

e Hence when v =N/N, 1s small a transition 1s expected



