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TCMPOutline

• LLL one body states

• Harmonic oscillator

• Rotation 

• Landau Levels

• Rotation ! Magnetic field

• Rotational Interlude 

• Vortex lattice formation

• TF description of rotating condensate

• LLL meanfield description

• LLL wavefunction

• Energy minimization ! conditions for meanfield LLL regime 

• Highly correlated states

• Laughlin wavefunction ! conditions for HCS 
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TCMPLLL One Body States (" = 0)
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Harmonic oscillator

Angular momentum

Create and destroy one quantum with positive (negative) circular 
polarization and one unit of positive (negative) angular momentum
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TCMPLLL One Body States (" # 0)

Rotating system
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Eigenvalues
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Ω→ ω⊥ Eigenvalues are essentially independent of n+

n- becomes the Landau Level index

Landau Levels



TCMPLLL One Body States (")
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•   The excitation energy is independent of m forming an inverted 
pyramid of states. For each non-negative integer n there are n +1 
degenerate angular momentum states (-n ... n, in steps of 2)

•   The degeneracy is lifted

•   States become nearly degenerate again, forming essentially 
horizontal rows.



TCMPLLL One Body States (" $ 1)

Ω/ω⊥ ≈ 1

LLL Physics appropriate when

Energy scales
Gap 2�ω⊥

Interaction energy gn(0) = µ
µ/ (2�ω⊥)� 1

Eigenfunctions of LLL

ψm ∝ rmeiφme−r2/(2d2
⊥)

•   m =0 represents the vacuum for both circularly polarized modes

•  The higher states (m >0) can be written as 

ψm ∝ ζme−r2/(2d2
⊥), where ζ = (x + iy)/d⊥



TCMPRotation and Magnetic field
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Synthetic vector potential
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TCMPRotational Interlude

• condense rotating thermal cloud

• stir with narrow obstacle (laser)

• deform trap elliptically and rotate

  

• Low  ! Long-lived quadrupole oscillations 

•   ! Vortex lattice formation

 - Dynamical instability of quadrupole mode                                                  

   [A. Ricati et al., PRL 86, 377 (2001); Sinha and Y. Castin, PRL 87, 190402 (2001)] 

 - Crystallisation insensitive to temperature                      

                    [Abo-Shaeer et al., PRL 88, 070409 (2002)]

ENS, Paris

Methods

Rotation Frequency  Ω
Ω

Ω ∼ 0.7ω⊥



TCMPTypical Movie (Increasing ")

Gross-Pitaevskii Simulation



TCMPHydrodynamical Model
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TCMP

• ! quantifies the deformation of the BEC in the rotating frame

• ! solutions may not be stable:  

Stable Solutions

Irrotational Velocity Field

Using Hydrodynamical Equations

v = α∇(xy)

α3 + (1− 2Ω2)α− εΩ = 0

∂

∂t

�
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δρ

�
= −

�
vc ·∇ g/m
∇ · ρ0∇ [(∇ · v) + vc ·∇]

� �
δS
δρ

�

vc = v + Ω× r
• Perturbations are polynomials 

• Positive eigenvalues unstable



TCMP

• On upper branch until dynamically unstable

• Density ripples form

• Ripples grow and become unstable

(I) Ripple Instability

Ω = 0.7ω⊥

!"# !"$ !"% !"&
!

!"!'

!"(

!"('

!)*"
#
+

$

!!",

!!"%

!)))

!",

!"%

%
)*
"
#
+

*-+

*.+
I II III

α
(ω
⊥

)

0.6 0.7 0.8 0.9

! !"!# !"$

!!"#

!

!"#

!
%&
"
#
'

$

&('
I

Ω(ω⊥)
! !"!# !"$

!!"#

!

!"#

!
%&
"
#
'

$

&('
I

α
(ω
⊥

)



TCMP(I) Interbranch Instability
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• On lower branch until no longer a solution

• Tries to deform to stable upper branch

• Unstable quadrupole shape oscillations
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TCMP(I) Catastrophic Instability
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• On lower branch until no longer a solution

• Upper branch dynamically unstable

• Rapid, catastrophic shape instability



TCMP

• From static solutions of hydrodynamic equations can determine regimes of vortex 
lattice formation

• Using GPE can see three distinct regimes

• Vortex lattice formation is a two dimensional zero temperature effect

• However symmetry must be broken 

Instabilities leading to vortex lattice formation in rotating Bose-Einstein condensates, 
N. G. Parker, R. M. W. van Bijnen and A. M. Martin, PRA 73, 061603(R) (2006)

o o o

! ! !

Experimental data of Hodby et al.

Lower bound of lower branch

Lower bound of dynamically unstable 

region

Numerical simulations – point where 

elliptical condensate breaks down

Experimental Comparison



TCMPAn Alternative to Rotation
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Synthetic gauges in BECs 

Synthetic magnetic fields for ultracold neutral atoms, Y.-J. Lin et al., Nature 462, 628 (2009).

Synthetic magneto-hydrodynamics in Bose-Einstein condensates and routes to vortex nucleation, L.B. 
Taylor et al., arXiv:1011.43.15.



TCMPLLL Condensate Wavefunction

f(ζ) ∝
�

j

(ζ − ζj)

•   f(") vanishes at each of the points " j which are the positions of the 
nodes of the condensate wave-function

•  The phase of this wave-function increases by 2# whenever " moves in 
the positive sense around any of these zeros

•  Thus the points " j are precisely the positions of the vortices in the 
trial state and minimization with respect to the constants cm is 
effectively the same as minimization with respect to the position of 
the vortices
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TCMPEnergy Minimization 
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TCMPLLL Condition (Unrestricted)

µmin ≤ 2�ω⊥

1− Ω̃ ≤ Z

2Na

Unrestricted minimization!! 

What about vortices?



TCMPHighly Correlated States ($)

1− Ω̃ ≤ Z

2Nβa
, where β = 1.1596

Mean field LLL regime:

•   At higher rotation frequencies the meanfield LLL regime should 
eventually disappear through a quantum phase transition, leading to a 
different, highly correlated, manybody ground state.

•  For meanfield LLL regime 
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TCMPExact Diagonalization ($ % $c)

•   The equilibrium state in the meanfield LLL regime is a vortex array 
that breaks the rotational symmetry and is not an eigenstate of Lz 

•   Could use exact diagonalisation to study the ground state for 
increasing Nv

•    Studies have investigated different filling fractions, $, from 0.5 to 9. 

•   Comparison between the meanfield LLL energy and exact 
diagonalization show that the meanfield vortex lattice is a ground 
state for $ % $c ($c =6)

•   Hence the meanfield LLL regime is valid for ($c =1)

1− Z

2Nβa
≤ Ω̃ ≤ 1− 8βa

ZN



TCMPExact Diagonalization ($ < $c)

•   The groundstates are rotationally symmetric incompressible vortex 
liquids that are eigenstates of Lz 

•   They have close similarities to the bosonic analogs of the Jain 
sequence of fractional quantum Hall states

•    The simplest of these many body ground states is the bosonic 
Laughlin state 

ΨLaughlin (r1, r2, ...., rN) ∝
N�

n<n�

(zn − zn�)2 e−
1
4

P
j |zj |2

•   No off-diagonal long range order and hence no BEC

•   The Laughlin state vanishes whenever two particles come together, 
enforcing the many-body correlations

•    The short range two body potential has zero expectation value in this 
correlated state

•   Strong overlap between exact diagonalization and the Laughlin state 
($ =1/2)



TCMPPhysics of Transition

•   Consider N bosonic particles in a plane, with 2N degrees of freedom

•   Vortices appear as the system rotates and the corresponding vortex 
coordinates provide Nv collective degrees of freedom

•    For slowly rotating systems the 2N particle coordinates provide a 
convenient description

•   In principle, the Nv collective vortex degrees of freedom should 
reduce the original total 2N degrees of freedom to 2N - Nv , but this is 
unimportant as long as Nv << N

•   When Nv becomes comparable with N the depletion of the particle 
degrees of freedom becomes crucial

•   This depletion on the particle degrees of freedom drives the phase 
transition to a wholly new ground state

•   Hence when $ =N/Nv is small a transition is expected


