Condensed Matter Emulation

Emulation of Quantum Hall Physics with BECs

Andy Martin University of Melbourne

Outline

THE UNIVERSITY OF MELBOURNE

- LLL one body states
 - Harmonic oscillator
 - Rotation
 - Landau Levels
 - Rotation \rightarrow Magnetic field
- Rotational Interlude
 - Vortex lattice formation
 - TF description of rotating condensate
- LLL meanfield description
 - LLL wavefunction
 - Energy minimization \rightarrow conditions for meanfield LLL regime
- Highly correlated states
 - Laughlin wavefunction \rightarrow conditions for HCS

- Condensed matter emulation
 - Ultracold atomic gases in optical lattices: mimicking condensed matter physics and beyond, M. Lewenstein, A. Sanpera, V. Ahufinger, B. Damski, A. Sen and U. Sen, Advances in Physics 56, 243 (2007)
 - *Many-body physics with ultracold gases*, I. Bloch, J. Dalibard and W. Zwerger, Rev. Mod. Phys. **80**, 885 (2008)
- Rotating BECs
 - *Rotating trapped Bose-Einstein condensates*, A. L. Fetter, Rev. Mod. Phys. 81, 647 (2009)

LLL One Body States ($\Omega = 0$)

Harmonic oscillator $H_0 = \hbar \omega_\perp \left(a_+^\dagger a_+ + a_-^\dagger a_- + 1 \right)$ $a_{\pm} = \frac{a_x \mp i a_y}{\sqrt{2}} \quad a_x = \frac{1}{\sqrt{2}} \left(\frac{x}{d_{\perp}} + i \frac{p_x d_{\perp}}{\hbar} \right) \quad a_y = \frac{1}{\sqrt{2}} \left(\frac{y}{d_{\perp}} + i \frac{p_y d_{\perp}}{\hbar} \right)$ $a_{\pm}^{\dagger} = \frac{a_x^{\dagger} \pm i a_y^{\dagger}}{\sqrt{2}} \quad a_x^{\dagger} = \frac{1}{\sqrt{2}} \left(\frac{x}{d_{\perp}} - i \frac{p_x d_{\perp}}{\hbar} \right) \quad a_y^{\dagger} = \frac{1}{\sqrt{2}} \left(\frac{y}{d_{\perp}} - i \frac{p_y d_{\perp}}{\hbar} \right)$ Angular momentum $L_z = xp_y - yp_x = \hbar \left(a_+^{\dagger} a_+ - a_-^{\dagger} a_- \right)$

Create and destroy one quantum with positive (negative) circular polarization and one unit of positive (negative) angular momentum

LLL One Body States ($\Omega \neq 0$)

Rotating system

 $H'_{0} = H_{0} - \Omega L_{z} = \hbar \omega_{\perp} + \hbar (\omega_{\perp} - \Omega) a^{\dagger}_{+} a_{+} + \hbar (\omega_{\perp} + \Omega) a^{\dagger}_{-} a_{-}$ Eigenvalues

$$\epsilon \left(n_{+}, n_{-} \right) = n_{+} \hbar \left(\omega_{\perp} - \Omega \right) + \hbar n_{-} \left(\omega_{\perp} + \Omega \right)$$

Landau Levels

LLL One Body States (Ω)

- The excitation energy is independent of *m* forming an inverted pyramid of states. For each non-negative integer *n* there are *n* +1 degenerate angular momentum states (-*n* ... *n*, in steps of 2)
- The degeneracy is lifted
- States become nearly degenerate again, forming essentially horizontal rows.

LLL Physics appropriate when $\Omega/\omega_{\perp} \approx 1$ Energy scales Gap $\longrightarrow 2\hbar\omega_{\perp}$ Interaction energy $\longrightarrow gn(0) = \mu$ **Eigenfunctions of LLL** $\psi_m \propto r^m e^{i\phi m} e^{-r^2/(2d_\perp^2)}$

- m = 0 represents the vacuum for both circularly polarized modes
- The higher states (m > 0) can be written as

$$\psi_m \propto \zeta^m e^{-r^2/(2d_\perp^2)}$$
, where $\zeta = (x+iy)/d_\perp$

Rotation and Magnetic field

Rotational Interlude

Methods

- condense rotating thermal cloud
- stir with narrow obstacle (laser)
- deform trap elliptically and rotate

Rotation Frequency Ω

- Low $\Omega \rightarrow$ Long-lived quadrupole oscillations
- $\Omega \sim 0.7 \omega_{\perp} \rightarrow$ Vortex lattice formation

- Dynamical instability of quadrupole mode [A. Ricati *et al.*, PRL **86**, 377 (2001); Sinha and Y. Castin, PRL **87**, 190402 (2001)]

- Crystallisation insensitive to temperature

[Abo-Shaeer et al., PRL 88, 070409 (2002)]

ENS, Paris

Typical Movie (Increasing Ω)

Gross-Pitaevskii Simulation

0002

Hydrodynamical Model

Gross Pitaevskii Equation

$$i\hbar\frac{\partial}{\partial t}\Psi(\mathbf{r},t) = \left(-\frac{\hbar^2}{2m}\nabla^2 + U_T(\mathbf{r}) + g\left|\Psi(\mathbf{r},t)\right|^2 - \Omega\hat{L}_z\right)\Psi(\mathbf{r},t)$$
$$U_T = \frac{m}{2}\left[(1-\varepsilon)\omega_{\perp}^2 x^2 + (1+\varepsilon)\omega_{\perp}^2 y^2 + \gamma^2 z^2\right]$$

Mandelung Transformation

Stable Solutions

Irrotational Velocity Field $\mathbf{v} = \alpha \nabla(xy)$ Using Hydrodynamical Equations $\alpha^3 + (1 - 2\Omega^2)\alpha - \varepsilon \Omega = 0$

- α quantifies the deformation of the BEC in the rotating frame
- α solutions may not be stable:

$$\frac{\partial}{\partial t} \begin{bmatrix} \delta S \\ \delta \rho \end{bmatrix} = - \begin{bmatrix} \mathbf{v}_{\mathbf{c}} \cdot \nabla & g/m \\ \nabla \cdot \rho_0 \nabla & [(\nabla \cdot \mathbf{v}) + \mathbf{v}_{\mathbf{c}} \cdot \nabla] \end{bmatrix} \begin{bmatrix} \delta S \\ \delta \rho \end{bmatrix}$$

$$\mathbf{v_c} = \mathbf{v} + \boldsymbol{\Omega} \times \mathbf{r}$$

- Perturbations are polynomials
- Positive eigenvalues unstable

(I) Ripple Instability

- On upper branch until dynamically unstable
- Density ripples form
- Ripples grow and become unstable

(I) Interbranch Instability

- On lower branch until no longer a solution
- Tries to deform to stable upper branch
- Unstable quadrupole shape oscillations

(I) Catastrophic Instability

- On lower branch until no longer a solution
- Upper branch dynamically unstable
- Rapid, catastrophic shape instability

Experimental Comparison

- 000 Experimental data of Hodby *et al*.
 - Lower bound of lower branch
 - Lower bound of dynamically unstable region
- $\times \times \times$ Numerical simulations point where elliptical condensate breaks down
- From static solutions of hydrodynamic equations can determine regimes of vortex lattice formation
- Using GPE can see three distinct regimes
- Vortex lattice formation is a two dimensional zero temperature effect
- However symmetry must be broken

Instabilities leading to vortex lattice formation in rotating Bose-Einstein condensates, N. G. Parker, R. M. W. van Bijnen and A. M. Martin, PRA **73**, 061603(R) (2006)

An Alternative to Rotation

Synthetic gauges in BECs

Synthetic magnetic fields for ultracold neutral atoms, Y.-J. Lin et al., Nature 462, 628 (2009).

Synthetic magneto-hydrodynamics in Bose-Einstein condensates and routes to vortex nucleation, L.B. Taylor *et al.*, arXiv:1011.43.15.

LLL Condensate Wavefunction

$$\psi_{LLL} = \sum_{m \ge 0} c_m \psi_m = f(\zeta) e^{-r^2/(2d_{\perp}^2)}$$
$$f(\zeta) \propto \prod_j (\zeta - \zeta_j)$$

- *f*(ζ) vanishes at each of the points ζ_j which are the positions of the nodes of the condensate wave-function
- The phase of this wave-function increases by 2π whenever ζ moves in the positive sense around any of these zeros
- Thus the points ζ_j are precisely the positions of the vortices in the trial state and minimization with respect to the constants c_m is effectively the same as minimization with respect to the position of the vortices

Energy Minimization

$$E\left[\psi\right] = \int d^{2}r\psi^{*} \left(\frac{p^{2}}{2M} + \frac{1}{2}M\omega_{\perp}^{2}r^{2} - \Omega L_{z} + \frac{1}{2}g_{2D}|\psi|^{2}\right)\psi$$

$$E\left[\psi_{LLL}\right] = \hbar\Omega + \int d^{2}r \left[M\omega_{\perp}^{2}\left(1 - \frac{\Omega}{\omega_{\perp}}\right)r^{2}|\psi_{LLL}|^{2} + \frac{1}{2}g_{2D}|\psi_{LLL}|^{4}\right]$$

$$\textbf{Unrestricted minimization}$$

$$|\psi_{min}|^{2} = n_{min}(0)\left(1 - \frac{r^{2}}{R_{0}^{2}}\right) = \frac{\mu_{min}}{g_{2D}}\left(1 - \frac{r^{2}M\omega_{\perp}^{2}(1 - \tilde{\Omega})}{\mu_{min}}\right)$$

$$\psi$$

$$\mu_{min} = \sqrt{\frac{8aN(1 - \tilde{\Omega})}{Z}}, \text{ where } Z = 2\pi d_{z}$$

LLL Condition (Unrestricted)

 $\mu_{\min} \le 2\hbar\omega_{\perp}$

Unrestricted minimization!! What about vortices?

Highly Correlated States (v)

Mean field LLL regime:

$$1 - \tilde{\Omega} \le \frac{Z}{2N\beta a}$$
, where $\beta = 1.1596$

- At higher rotation frequencies the meanfield LLL regime should eventually disappear through a quantum phase transition, leading to a different, highly correlated, manybody ground state.
- For meanfield LLL regime

$$N_v \approx \frac{R_0^2}{d_\perp^2} = \sqrt{\frac{8Na\beta}{Z(1-\tilde{\Omega})}}$$

$$\nu = \frac{N}{N_v} = \sqrt{\frac{Z(1-\tilde{\Omega})N}{8a\beta}}$$

Exact Diagonalization ($v \ge v_c$)

- The equilibrium state in the meanfield LLL regime is a vortex array that breaks the rotational symmetry and is not an eigenstate of L_z
- Could use exact diagonalisation to study the ground state for increasing N_v
- Studies have investigated different filling fractions, *v*, from 0.5 to 9.
- Comparison between the meanfield LLL energy and exact diagonalization show that the meanfield vortex lattice is a ground state for $v \ge v_c$ ($v_c = 6$)
- Hence the meanfield LLL regime is valid for $(v_c = 1)$

$$1 - \frac{Z}{2N\beta a} \le \tilde{\Omega} \le 1 - \frac{8\beta a}{ZN}$$

Exact Diagonalization ($v < v_c$)

- The groundstates are rotationally symmetric incompressible vortex liquids that are eigenstates of L_z
- They have close similarities to the bosonic analogs of the Jain sequence of fractional quantum Hall states
- The simplest of these many body ground states is the bosonic Laughlin state

$$\Psi_{Laughlin}\left(\mathbf{r_{1}},\mathbf{r_{2}},...,\mathbf{r_{N}}\right) \propto \prod_{n< n'}^{N} (z_{n}-z_{n'})^{2} e^{-\frac{1}{4}\sum_{j}|z_{j}|^{2}}$$

- No off-diagonal long range order and hence no BEC
- The Laughlin state vanishes whenever two particles come together, enforcing the many-body correlations
- The short range two body potential has zero expectation value in this correlated state
- Strong overlap between exact diagonalization and the Laughlin state (v = 1/2)

Physics of Transition

- Consider N bosonic particles in a plane, with 2N degrees of freedom
- Vortices appear as the system rotates and the corresponding vortex coordinates provide N_v collective degrees of freedom
- For slowly rotating systems the 2N particle coordinates provide a convenient description
- In principle, the N_v collective vortex degrees of freedom should reduce the original total 2N degrees of freedom to $2N - N_v$, but this is unimportant as long as $N_v \ll N$
- When *N_v* becomes comparable with *N* the depletion of the particle degrees of freedom becomes crucial
- This depletion on the particle degrees of freedom drives the phase transition to a wholly new ground state
- Hence when $v = N/N_v$ is small a transition is expected