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• Bose Hubbard model (cold gases)
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• Meanfield description
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•Coupled Atom Cavities
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• Hamiltonian for coupled atom cavities
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• Solid Light
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TCMPBose-Hubbard Model
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TCMPBose-Hubbard Model
Assumptions

•  The thermal and mean interaction energies at a single site are much 
smaller than the energy separation to the first excited band

•  The Wannier functions decay essentially within a single lattice 
constant

•  Under these assumptions: 
•  Only the lowest energy band needs to be included in our 

description
•  The hoping matrix elements are only significant for nearest 

neighbours
•  The interactions are dominated by the on-site contribution only
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TCMPSuperfluid state (U =0)
H = −J
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•  The manybody ground state is simply an ideal BEC where all the 
atoms are in the q =0 Bloch state of the lowest band

•  Hence the groundstate is a Gross-Pitaevskii type state with a 
condensate fraction equal to one

•  However the critical temperature is significantly reduced (effective 
mass) as compared to the free case

|ΨU=0
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TCMPMott Insulator Phase (U >>J)
H = −J
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•   Assume (for the moment) the number of atoms is equal to the 
number of lattice points 

•  With increasing J the atoms start to hop around, which involves 
double occupancy, increasing the energy by U. However, the ground 
state is no longer a simple product state

•  Once J becomes of order or larger than U the gain in kinetic energy 
outweighs the repulsion due to double occupancy

•  The atoms then undergo a transition, in the thermodynamic limit, so a 
superfluid state. 
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TCMPBHM (PhaseDiagram)
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•  U/J → 0: the KE dominate and the 
ground state is a delocalized 
superfluid

•  U/J is large: interactions dominate 
and one obtains a series of MI 
phases with fixed integer filling 
(∂n/∂µ = 0)

•  The transition between the SF and 
MI phases is associated with a loss 
of long-range order



TCMPBHM (Meanfield)
H = −J
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HMF = −zJψ
(
a† + a

)
+

U

2
n (n− 1)− µn + zJψ2

= −ψ
(
a† + a

)
+

U

2
n (n− 1)− µn + ψ2 = H0 + ψV

a†iaj = 〈a†i 〉aj + a†i 〈aj〉 − 〈a†i 〉〈aj〉 = ψ(a†i + aj) − ψ2

Meanfield substitution



TCMPBHM (Meanfield Perturbation)

Expansion in ψ (odd powers zero)

HMF = H0 + ψV

•  Denote the unperturbed energy of the state with n particles by En(0)

•  Second order correction 

E(0)
g =

{
E(0)

n |n = 0, 1, 2, 3...〉
}

min

E(0)
g = 0, if µ = 0

E(0)
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1
2
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TCMPBHM (Meanfield Critical Points)

Minimize energy as a function of superfluid parameter
Eg = E(0)

g + E(2)
g + O(ψ4)

ψ = 0, when
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+
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TCMPBHM (Phase Diagram Revisited)

µ± =
1
2

[
U(2g − 1)− 1

]
± 1

2

√
U

2 − 2U(2g + 1) + 1

U c = 2g + 1 +
√

(2g + 1)2 − 1

U c = 5.83, for g = 1

Meanfield

QMC (z=4)
U c = 7.34, for g = 1



TCMPBHM (Experiments: BECs)

(V0/Er)c =
1
4

ln2

(√
2d

πa
(U/J)c

)
,

where Er is the recoil energy Er = h2/(2mλ2)

Translation to experimental parameters



TCMPBHM (Experimental Results)



TCMPBHM (Experimental Analysis)

n(k) ∼ |w̃(k)|2
∑

R

eik·RG(1)(R)

Momentum distribution

•   MI phase: the one particle density matrix decays to zero 
exponentially

•   SF phase: is characterized by by a momentum distribution which 
exhibits sharp peaks at the reciprocal lattice vectors k =G (G.R 
=2πn)

•   The peaks in the momentum distribution initially grow because of 
the decrease in the spatial extent of the Wannier function w(r), which 
results in an increase in its Fourier transform at higher momentum

•   In the MI regime the remnants of the interference peaks remain as 
long as G(1)(R) extends over several lattice spacings



TCMPSingle Atom Cavity
Jaynes-Cummings Model

•   A two level atom interacts with a quantized cavity field 
•   The JC Hamiltonian consists of a single-moded quantized 

electromagnetic field, atomic excitation, and atom-field interaction 
terms 

HJC = Hfield + Hatom + Hint



TCMPSingle Atom Cavity
Jaynes-Cummings Model

•   The Hamiltonian of the quantized free electromagnetic field for a 
single mode of frequency is 

•   The Hamiltonian of the atomic excitation is 

•   The Hamiltonian for the atom-photon interaction is derived from a 
classical description of a two-level transition of the electric dipole 
interaction (dipole approximation) and the rotating wave 
approximation:

HJC = Hfield + Hatom + Hint

Hfield = ω

(
a†a +

1
2

)

Hatom = εσ+σ−

Hint = β
(
σ+a + σ−a†

)



TCMPSingle Atom Cavity
Jaynes-Cummings Model

HJC = εσ+σ− + ωa†a + β
(
σ+a + σ−a†

)



TCMPSingle Atom Cavity
Jaynes-Cummings Model

HJC = εσ+σ− + ωa†a + β
(
σ+a + σ−a†

)

E|g,0〉 = 0

E|±,n〉 = nω ±
√

nβ2 + ∆2/4− ∆
2

∆ = ω − ε



TCMPSingle Atom Cavity
Jaynes-Cummings Model:

Photon Blockade



TCMPSingle Atom Cavity

Depictions of micro-cavities which have been coupled to high-dipole 
moment resonant transition systems: (a) cesium atoms in microtoroid 
cavity [1], (b) rubidium atom in Fabry-Perot resonators [2], (c) 
microstrip cavity with charge qubit [3] (d) quantum dots in Fabry-Perot 
resonator [4], (e) quantum dots in photonic bandgap cavity, and (f ) 
diamond nitogen-vacancy centre in whispering gallery mode microdisk 
[5].

Experimental Possibilities (I)



TCMPCoupled Atom Cavities
Experimental Possibilities (II)

•   A possible realisation of a 1D solid-light systems. Here holes are 
drilled into a thin membrane and lattice defects serve as the optical 
cavities housing two-level atoms.
[1] Observation of strong coupling between one atom and a monolithic microresonator, 
T. Aoki et al., Nature 443, 671 (2006)

[2] Vacuum-stimulated cooling of single atoms in three dimensions,                                           
S. Nuβmann et al., Nature Physics 1, 122 (2005)

[3] Superconducting quantum bits, 
J. Clarke and F. Wilhelm, Nature 453, 1031 (2008)

[4] Strong Coupling in a single quantum dot-semiconductor microcavity system, 
J.P. Reithmaier et al., Nature 432, 197 (2004)

[5] Coherent interference effects in a nano-assembled diamond NV center cavity-QED system, 
P. Barclay et al., Optics Express 17, 8081 (2009)



TCMPCoupled Atom Cavities
JCH Hamiltonian

HJCH =
∑

i

HJC
i − κ

∑

〈i,j〉

a†iaj −
∑

i

µi

(
σi

+σi
− + a†iai

)

Meanfield Hamiltonian
a†iaj = 〈a†i 〉aj + a†i 〈aj〉 − 〈a†i 〉〈aj〉 = ψ(a†i + aj) − ψ2

HJCH = HJC − zκψ(a† + a) + zκψ2 − µ
(
σ+σ− + a†a

)



TCMPCoupled Atom Cavities
Finding the Groundstate



TCMPCoupled Atom Cavities
Meanfield Solution


