Nonlinear Quantum Interferometry
with Bose Condensed Atoms

Chaohong Lee (ZZEH4)

State Key Laboratory of Optoelectronic Materials and Technologies,
School of Physics and Engineering,
Sun Yat-Sen University, Guangzhou 510275, China

Email: lichaoh2@mail.sysu.edu.cn; chleecn@gmail.com
ResearcherlD: www.researcherid.com/rid/A-1402-2008

Supported by NNSFC, MOST and MOE m" |



http://www.researcherid.com/rid/A-1402-2008

Second Quantum Revolution
- from fundamental science to practical technology

* The first guantum revolution develops the
fundamental theory for understanding what
already exists in our nature.

* The emergence of quantum technology is not
just a way to understand what already exists, but
also a way to engineer our surroundings for our
own needs from science to technology. This is
the second quantum revolution.

Dowling and Milburn, Philosophical Transactions of
the Royal Society of London A, 361 (2003) 1655-1674



The Second Revolution WiHl Allow Us to
Manipulate the Quantum Worig
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1. Introduction

1.1. Measurement and quantum mechanics

 Measurement is a physical process, and the accuracy to which
measurements can be performed is governed by the laws of physics.

» Systems at small scales are governed by the laws of quantum
mechanics, which place limits on the accuracy to which
measurements can be performed.

* The Heisenberg uncertainty relation imposes an intrinsic uncertainty
on the values of measurement results of complementary observables
such as position and momentum.

* In principle, every measurement apparatus is itself a quantum system.
Therefore, the uncertainty relations together with other quantum
constraints on the speed of evolution impose limits on how accurately
we can measure quantities.

[1] Special Issue: Fundamentals of Measurement, Science (19 November 2004).

[2] V. Giovannetti, S. Lloyd, and L. Maccone, Quantum-Enhanced Measurements:
Beating the Standard Quantum Limit, Science 306, 1330 (2004).

[3] V. Giovannetti, S. Lloyd and L. Maccone, Advances in quantum metrology, Nature
Photonics 5, 222 (2011).
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The more precisely
the position is
determined, the less
precisely the
momentum is
known in this
instant, and vice
versa.

--Heisenberg, 1927



To Increase precision, prepare and repeat the measurement
v times,

I N

“prabe preparation

—> the uncertainty reduces Cramer-Rao bound

(central limit theorem)—__ 4 h l N

~A2Ap v AH

Remember, we're looking for the AVERAGE position (not the position)




Quantum metrology with independent particles
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Quantum metrology with entangled particles

| yes
no
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v = (number of trials) N cat-state atoms




1.2. Interferometry with Bose condensed atoms
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Double-well interferometers

(1) Coherent splitting of the wave
function by slowly deforming a
single trap into a double well is the
generic trapped atom beam
splitter, achieving physical
separation of two wave-function
components that start with the
same phase.

(2) When the two wells are well-
separated, an interaction may be
applied to either.

(3) Finally the split atoms in the
two wells are recombined to
observe the interference.

a) 3

£, f /

by~
c) .

d)

Position

X

Shin et al., 2004, “Atom interferometry with Bose-Einstein condensates
in a double-well potential,” Phys. Rev. Lett. 92, 050405.



Atom-chip interferometers )

atom chip h) - | -
. oc Bl ./ RF .|
Atoms are manipulated by Y .iwire 5 o

electric, magnetic, and optical { oy ) ' /’\
fields created by L e
microfabricated structures “‘ﬁfﬂ.’ﬁ"“g c)'u
containing conductors w5 N/
designed to produce the Za: I IESSN
desired potentials such as |
harmonic potential and

' RF field

DC current

I

imaging

double-well potential. d)[ o data
2
Atom chips have been 3
demonstrated to be capable of ¢
quickly creating BECs and " |
also of complex manipulation 400 50 0 5 10060 90 0 9
of ultracold atoms on a pasition (an] ¢ (deg)
microscale, _Suc_h as Spllttlng Schumm et al, 2005, “Matter-wave
and recombination. interferometry in a double well on an atom

chip,” Nature Phys. 1, 57.



Ramsey interferometers

(1) prepare an initial state |1>; =3
pump beam .

(2)apply the first half-Pi pulse to |
create an equal superposition =
of [1> and |2>;

(3)accumulate a relative phase
between [1> and |2> in the free

evolution;
(4)recombine |1> and |2> via the o
second half-Pi pulse;
= ()
(5)detect the final state. light

Atom Interferometry,
edited by P. Berman (Academic Press, San Diego, 1997)

Cronin, Schmiedmayer, Pritchard, Rev. Mod. Phys. 81, 1051 (2009)



Applications in precision measurement

Quantum frequency standard

Atomic transitions are very useful to measure 7
time or frequency with very high accuracy that /

the definition of a second is based on them.

2>

fgrobe laser

Starting with a system of N non-interacting /

atoms in the ground state |0>, an ’ 11>
electromagnetic pulse is applied to create _

equal superposition of |0> and of an excited coupling laser
state |1> for each atom. |0>

A subsequent free evolution of the atoms for a

two states, wt, where w is the frequency of the

time t introduces a phase factor between the -
transition between [0> and |1>. /

signal

w—Aw (
At the end of the free evolution, a second r o+Ae
electromagnetic pulse is applied and then the
probability for the final state in |0> (Ramsey \/ | /

,
frequency

interferometry) is measured.



Other applications

Gravimeters (gravity), b=(G-3)7+2G-(Q X 57
gryroscopes (rotation), and
gradiometers

2

, Gatom _mc hphE ~ 101
Newton’s constant G & - == .
ieht

Aw  Aggu

Tests of relativity
Interferometers in orbit (GPS)

Fine structure constant and
h/M

o’ = (¢*/hc)? = 2R,/ c)him,.

Cronin, Schmiedmayer, Pritchard, Rev. Mod. Phys. 81, 1051 (2009)



2. Matter-wave interferometry

2.1. Macroscopic quantum coherence of atomic BECs

Hamiltonian in quantum field theory

H = / drt(r [ hQVQJrD;H(r)] U(r)

2m

+o / drde’ B (1) § () V (1 — ) B ()0 (),

contact interaction at
ultralow temperature

0= / driri (v [ h2V2+¥';m(r)] W (r)

V(r'—r)=gdr' —r),

2m

+ 2 [l () ()b () (o)




2v72
H= / drUi(r [ v + Vert(r) | W(r)

2m

+3 /drm’f( YU ()W (r)¥(r).

U(r,t) = ®(r,t) + V(r,t),  mean-field
approximation

Hup = / Ird* (x) [ RVE vm(r)] B(r)

21m

+ 9 / drd* (r)* (1) (r) d(r.

AV
2m

V) +ol0(r. O | 0(r.)




2.2. Atomic matter-wave interference and nonlinear
excitations

380
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Schematic diagram for 1D BEC interferometry



Interference of two freely expanding condensates



(a) Linear system, A = 0
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(b) Nonlinear system, A = 20
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Nonlinear excitations in matter-wave interference



2.3. Bose-Josephson junction

@

&

\_ " coupling

Schematic diagrams for Bose-Josephson junctions:

(a) an external Bose-Josephson junction linked by quantum
tunneling, and

(b) an internal Bose-Josephson junction via a two-
component BEC linked by Raman fields.



External Bose-Josephson junction under two-mode
approximation

O(r,t) = ¢1(t)o1(r) + ¢a(t) Pa(r)

Hyp = — J(0Ty +03501) + 21 [ + 22 [
1

~Uss [iha|*.

| N
+ Ui \ﬁz*l\hl + 5

2

Internal Bose-Josephson junction under single-mode
approximation

G,(r,t) =;(t)o(r)

Hyp =—J 112+’f_g?—1)—|—€1\?—-’3’1\2+£2\?#';*2\2
1 4 1 4
—Uqq |0 —Uss 1)

+2 11 |11 +2 29 |12

+ Usz [Un]” 1]



Unified form for both external and internal BJJs

o £

H=_(ny—ny)+ — (ng — ?1-..1)2 — J (VThs + 03y,

2 8

1 — af1*¥a . — Iy . 2
with n; = ¥y = 1],
d=c9—c1+ N ([JTQQ — [,-'Tll) /4,
E. = Uy, + Uy for external BJJs

E. = Uy + Uy, — 2U,5 for internal ones.
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Rabi oscillation in a linear system (Ec = ()

1
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Trajectories in the phase-space (z, e ) of a linear BJJ
z - the fractional population imbalance, e - the relative phase

-



Rabi oscillation and macroscopic quantum self-trapping

Yabi

Trajectories in the phase-space (z, e ) of a nonlinear BJJ



Experimental observation of MQST

el 1

Sur[dnoos 'sA uoroeIdul O1jeI

classical non -rigid pendulum

2 N
H = ym’ —Q\/(Zj —m? cos(@) ~ o

Theory:
Smerzi et al, PRL 79, 4950 (1997) !

Experiment: Oberthaler et al., PRL 95,010402 (2005); PRL 105, 204101 (2010)




Shapiro resonance and chaos
(a) 5, = 0.001 (b) 5, =1/3

Poincare sections for a BJJ with a driving
O(t) = &1 cos (27t).



Symmetry-breaking transition
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Theory: Lee et al., PRA 69, 033611 (2004); Lee, PRL 102, 070401 (2009); etc.
Experiment: Oberthaler et al., PRL 105, 204101 (2010).



Universal dynamics near critical point

Two characteristic time scales for slow dynsmics across the crtical point,
(1) reaction time (how fast the system follows its ground state),
r.=Nh/A, (1)

(2) transition time (how fast the system is driven),

dA (1)

T, =A,(1)/

dt

The excitation gap over the ground state

JHQ(hQ+ E L) for [hQ/E.|> L
A, (1) =

JECL) —(hQ)* for [hQ/E <L
where, L=N/2,E. =2y (gll T 8» _2g12)

7. <1, adiabatic evolution

. _ _ critical point
7. > 7,, non - adiabatic evolution (t=0)




Kibble-Zurek scalings near critical point

r N e N
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= | e~ vt
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Q)= Q1 =1/7,) = Q. £ B
e = |[Q0) — Q.10 = l1l/7,
70 = 1/Q,

(c)-
o Lee, PRL 102, 070401 (2009)




3. Many-body quantum interferometry

Hamiltonian in second quantizati on

M iopeh v e b )+ G BB + S (E, 5B, 4G 5B b

077 N/ jj)
2 j=1,2 2

H=-

define the collective spin operators

_ a0 G (b)) L
J = (bf, b;)o—- 1| with Pauli matrices &

4 "

H=-B-J+ 2 +0(N)+O(N*) withB=(B,,B,,B.) N=b'b+bb,

if total number of atoms N is conserved, O(N) and O(Z(fz) can be eliminated.
That 1s,

H=dJ.-hmQ(cosp-J_ +sing-J )+ xJ’




Ground states for symmetric Bose-Josephson junction

Q ;.
|H/7/'zE(a;al+afaz)+?‘(n2nl)2 —QJ + x>
Regime x /9 >>1 2/9]~0 x /9 >>1

x>0 x <0
State form (a;)N/z(a;)MM (a: ta, )N‘O> ((af )N + (a; )N)O>
(N/2)! 2V2 N eV
Coherent matrix N(1 0 N(1 1 N(1 0
(a/a,) 210 1 2\1 1 210 1
Fluctuations AN; ~0 AN, ~/N AN, ~ N

1




Resonant tunneling and interaction blockade in asymmetric systems
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E-:' 1000 (solid lines), or

E-:' 100 (dash lines), or
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Theory Experiment

C. Lee, L.-B. Fu, and Yu. S. Kivshar, P. Cheinet, 1. Bloch, et al.,
EPL 81, 60006 (2008); Carr et al., ... Phys. Rev. Lett. 101, 090404 (2008)




3.1. Quantum spin squeezing and many-particle entanglement

Quantum spin squeezing

Squeezing parameter based on the Heisenberg uncertainty relation
Ja, Js] = i2apyJy. 244 is the Levi-Civita symbol.
The uncertainty relation is (AJQ)2 (AJg)Q > \(J.ﬂ{..)|2 /4
2 (AJ.)°

2 = AT a #£ v € (x,y,2),squeezing parameter

if Sir < 1, the state is squeezed.

Squeezing parameter £ given by Kitagawa and Ueda

min (AJ%L) B 4 min (AJ%)

2 __

° j/2 N

1, refers to an axis perpendicular to the MSD ( ﬂ>
the mean-spin direction (MSD) 119 = —=

the minimization is over all directions )]
J. Ma, X.G. Wang, C. P. Sun, and F. Nori, arXiv:1011.2978 (Phys. Rep.)




Squeezing parameter S?Q quven by Wineland et al.

Ao\ N(AJz,)

¢k = : = -
(A‘;‘-))CSS ‘ <f>

(a) Coherent spin state (b) Spin squeezed state rotate the state around the z-axis.
AJy 1 &R . N
= Zp Ab=—— JO — exp(iod VT, exp(—id.
AN Lf N v p(ioJy) Sy exp(—igJ;)
| : = cos ¢.J, — sinoJ,

the phase sensitivity Ao

L A_jgc}ut B AJ;LW
O{Iy™) lcos o(.J.)]
Binomial distribution Sub-binomial distribution
03 : 03 standard quantum limit (SQL)

(SSSlj,m)y[?

0.2 (AD) s = “', \/12_ \/1_
J J

0.2

(CSS|j,m)y[?

0.1 0.1
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Spin squeezing by nonlinear interactions (Kitagawa and Ueda)

(a) (¢)
One-axis twisting can reduce the noise down tothe order of /3

FIG. 2. State evolutions by one-axis twisting in terms of
the quasiprobability distribution (QPD) on the sphere for

= 20. The densities of the figures are normalized by the
maximum value Qmax of Q(&,¢). (a) shows the initial co-
herent spin state |8=3%, ¢=0) (Qmax = 1). (b) and (c) show
one-axis twisted states generated by the unitary transforma-
tion |/ = exp[—iuS2/2]; (b) optimally squeezed at u = 0.199
(Qmax = 0.445) and (c) excessively twisted at ¢ = 0.399
(Qmax = 0.241). Although not clear from the figure, the
QPD of (¢) deviates from a geodesic (swirliness).




Spin squeezing and entanglement

A symmetric state is entangled if and only if it violates the inequality,

LT A(ATS)? - N (AJT;) N(AJ,, )
l—<—72>2 (v) @Sé:,m;, 5 = 3 L 7 > 1
J_:\'I .1'.:\" J.:\'I HI.-" "l - < ﬁ') <]]12) + <]]13)

............... Dynamical Evolution........

(a) Uncorrelated spins

Coherent spin state

y

Squeezed spin state

Many-particle entanglement with
Bose-Einstein condensates
A. Sgrensen*, L.-M. Duanft, J. I. Cirac| & P. Zollert

NATURE | VOL 409 |4 JANUARY 2001 | www.nature.com

S. Raghavan, H. Pu, P. Meystre, and N. Bigelow,

Generation of arbitrary Dicke states in spinor
Bose-Einstein condensates,

Opt. Commun. 188, 149 (2001)

M. Zhang, K. Helmerson, and L. You,
Entanglement and spin squeezing of Bose-
Einstein-condensed atoms, Phys. Rev. A 68,
043622 (2003)

X. X. Yang and Y. Wu, Effective Two-State Model
and NOON States for Double-Well Bose-Einstein
Condensates in Strong-Interaction Regime,
Commun. Theor. Phys. 52, 244 (2009)




3.2. High-precision interferometry via spin squeezed states

__Ramsey interferometry on the Bloch sphere

— W S
\ &2 | VA j (7.3

input state after first after evolufion after second

7 /2 pulse time = /2 pulse
N - readout -
<J Z> = —CO0S ¢, :
2 &, =1, spin coherent state
(8<JZ>/5¢) _ E, &, <1, spin squeezed state |
a2 Dependent on &,, A(g)achieves from
N standard quantum Lmit, Heisenber g limit,

N
A(JZ ) —_- é:R ’ . o e
2 to super - Heisenberg hmiut.

[A(¢) = P <§f§; 2¢ = j%} — phase sensitivity




Fast diabatic spin squeezing by one axis twisting evolution
H/h =y ]:f + 2], + AwyJ,, where ], = J,cosy + J,s1in 7y (Kitagawa, Ueda)

LETTERS

strong nonlinearity via controlling spatial overlap

Atom-chip-based generation of entanglement for
quantum metrology

Max F. Riedel', Pascal Bohi'*, Yun Li**, Theodor W. Hansch ', Alice Sinatra” & Philipp Treutlein"*”

Vol 46422 April 2010| doi:10.1038/nature08919 nature

LETTERS

strong nonlinearity via using Feshbach resonance

Nonlinear atom interferometer surpasses classical
precision limit

C. Gross', T. Zibold', E. Nicklas', J. Esteve't & M. K. Oberthaler’



Twin Matter Waves for Interferometry Beyond the Classical Limit
B. Licke, et al.

Science 334 773 (201 ‘1%
DOI: 10. 112E5fsc|eni:e 1208798 pair-correlated states from spin dynamics

Probability

Fig. 3. Internal-state beam splitter for nonclassical matter waves. () Sche-
matic of the beam splitter sequence. (1) Spin dynamics initially populates
the states IF = 2,m p=+1). (2) To couple these states, the atoms in [2,-1) are
transferred to |1,0) by a microwave pulse. (3) Next, a pulse of variable
duration t couples the states 2,+1) and [1,0). (4) Finally, atoms in |1,0) are

transferred to the state [2,-1) to enable their independent detection. (B)

Geometric representation of the sensitivity of a twin Fock
input state.
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Spin-nematic squeezed vacuum in a quantum gas

C. D.Hamley, C. S. Gerving, T. M. Hoang, E. M. Bookjans and M. S. Chapman™*

Collisions in ultracold atomic gases have been used to induce quadrature spin
squeezing in two-component Bose condensates...

Here, we generalize this finding to a higher-dimensional spin space by measuring
squeezing in a spin-1 Bose condensate. Following a quench through a quantum
phase transition (between FM and AFM states), we demonstrate that spin-
nematic quadrature squeezing improves on the standard quantum limit by up to
8-10 dB...

The observation has implications for continuous variable quantum information
and quantum-enhanced magnetometry.

o 1.
H=AS"+ Eﬁi Q.;  SU(3) Cartesian dipole—quadrupole basis

F=8+8+8 Q.= /3l — (4/3)a}d, + (2/3)al ,a_,



3.3. High-precision interferometry via NOON states

H/nh :g(nl _nz)_%(a;al +al+a2)+%(nl _”2)2 :d]_— _Q]x +ZJ_-2

1

Fockbasis:‘NOON> :ﬁin =N,n, = O>+‘n1 =0,n, = N>)
spin basis : ‘NOON> :\/IE(J zg,Jz = —%>+‘J = g,JZ = +I;>j

The NOON state 1s a ground state for system of 6 =0, y < 0and ‘Q/ ;(‘ <<1

Adiabatic preparation of NOON state via dynamical bifurcation

P
?

.
%
5
~
.

- b’ - T

-0 -60 -50 =40 =30
Q/(2x) C. Lee, PRL 97, 150402 (2006)



Beam splitting and recombination via dynamical bifurcation

(a) ()

0.16
M- 0.5 =
z Q=40 Q=0
=
T (.08 i - 7
E .25
i il
=10 =5 ] 5 10 =10 -5 o 5 10
B [
() (d]
ir-r——=—"— R
! :
N i
E 051 —— F1 ]
LT | F|:|+F1 I
|
ol = - — ..
A 30 20 10 0

Q

Forasystemof 0 =0and y <0,if Q=40—>Q =0,

GS) =|CS),,,,, — [NOON) = (|P1)+|P2))/2.

Here, |P1)=|J = N/2,M = —N/2)and |P2) = |J = N/2,M = +N/2) are

the ground and first - excited states for the systemof Q@ =0and 0< o < ‘ 4

b

respectively. They can be used as two paths of a MZ interferometer.



Phase accumulation via the term of 0Jz

Switch on the term oJ |, for a period of time T,

1 (6-16T~(N/2)‘P1> + e+i6T-(N/2)‘P2>)

A

with @ = ST, which is the phase accumulated in a single - atom system.

NOON)

Extract the relative phase from the population information via a
dynamical bifurcation from |Q/y<<1 to |Q/y[>>1

Due to the indistinguishability, we can not use the proposals of Wineland et al.
and Caves et al.

At the side of ‘Q/ ;(‘ << 1,the ground [first excited] states will be
q P1> + ‘ P2>/«/§) [q P1> — ‘ P2>)/«/5] even for a very small Q.

Therefore, the state after the dynamical bifurcation becomes
cos(Ngo/2){ GS> —1i- sin(Ngo/2)‘ FS>,

(1+cos(Ng))/2
(1-cos(Ng))/2.

whose populations are P = cos’(N¢/2)
and P, =sin*(Ng/2)



Detection

Usually, it is not easy to distinguish the |GS> and |FS> at the side of

Q/y>>1.

Note that the degeneracy of |[P1> and |P2> can be broken by a suitable
bias 0, we can suddenly switch on 0Jz with 6<< Q at the side of

Q/y>>1.

Then keep 60 unchanged and adiabatically switch off €2, the |GS> and
|FS> will adiabatically evolve into |[P1> and |P2>, respectively.

a)

400

200 1

x =-1.0, 8=0.5

Frobability

Frobability

2
tn

2
th

(b

Zof

-1 i -
F"_'II] s
0.7r F1 :
a=0.5, &=0.0
10 20 iy 50
_ Q
(=]
-‘I —_——
jo=
T=, &=0.5%
0
=10 =5 0 5 10
(d) M
.1 —T T
1>
Q=0 &=0.5
{:l 1 1 1
=10 =5 5 10



Schematic diagram for MZ interferometry via NOON states
of indistinguishable systems

Hamiltonian, H/h=&J. - QJ_+ yJ?

Tput Detect

P1)4[P2) o2 |P1)4e > |p2)

2,_2> — |CS>SU(2) —~ 2 = J2
= COS(%)|GS> —1- sin(%} FS> = cos(%) P1> —1- sin(%m P2>



Keynotes

e negative nonlineari ty (¥ < 0) — Feshbach resonance
e coupling — tunnelling (double - well system), or
Raman transitio n (two - component condensate )
e two paths — two degenerate d ground states for the system of y <0
e beam splitting/ recombimat i1on — dynamical bifurcatio n

e path entangled state (NOON state) — dynamical bifurcatio n

Advantages

 large total number of particle (in order of 103, 10 for systems of photons
and trapped ions)

* reduced influence of environment (adiabatic evolution and closed sub-
Hilbert space)

* measurement precision of Heisenberg limit (path entangled states)

« experimental possibility (double-well or two-component systems)
Challenge

« adiabatic evolution requests long coherent time

C. Lee, PRL 97, 150402 (2006)



Adiabatic MZ interferometer with ultracold trapped ions
Simulating a quantum magnet with trapped ions

A. FRIEDENAUER*, H. SCHMITZ*, J. T. GLUECKERT, D. PORRAS AND T. SCHAETZ'

Nature Physics 4, 757 - 761 (2008)
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Our proposal: Quantum phase transition (Beam Splitting) via
two-step sweeping of increasing J and then decreasing B

[no theoretical imperfection under adiabatic evolution]
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4. Summary and open problems

Summary

* In interferometers of Bose condensed atoms, the atom-atom
interaction brings the nonlinearity to the system.

« Tuning the ratio of nonlinearity and coupling, symmetry-breaking
transitions appear and the dynamics near the critical point obey
the universal Kibble-Zurek mechanism.

* The spin squeezed states and NOON state can be prepared by
controlling the nonlinearity and these states can used for high-
precision interferometry beyond the standard quantum limit.

Open Problems

- noises (quantum fluctuations and technical noises)

- imperfect effects (atom loss and environment)

- coupling between internal and external degrees of freedom
- finite-temperature effects
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