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Overview	


•  Three lectures covering:	



–  History and development of the field	



–  Ideal Fermi gases	



–  Interactions in cold gases	


–  Feshbach resonances	



–  BEC-BCS crossover	



–  Universality	



•  We will cover some of the basic ideas underpinning these topics	





Useful resources	


•  Ideal Fermi gases:	



–  D. V. Schroeder, “An introduction to thermal physics”,  Addison-Wesley (2000)	


–  S. Giorgini, et al. “Ultracold Fermi gases”, Rev. Mod. Phys. 80, 1215 (2008)	



•  Cold collisions:	


–  J. Dalibard, “Collisional dynamics of ultracold atoms”, Proc Int School of  

Physics Enrico  Fermi, Course CXL: Bose -- Einstein condensation in gases, 
Varenna, (eds) M. Inguscio, S. Stringari, C. Wieman (1998)	



–  J. Walraven, “Elements of quantum gases”, http://staff.science.uva.nl/~walraven/
walraven/Publications_files/Elements-of-Quantum-Gases-I.pdf (2009-10)	



–  Landau and Lifshitz, “Quantum mechanics”, Ch XVII, Oxford (2002)	


	

 	

	



•  BEC-BCS crossover:	


–  S. Giorgini, et al. “Ultracold Fermi gases” Rev. Mod. Phys. 80, 1215 (2008).	


–  M. Zwierlein, PhD thesis, MIT (2006)   http://cua.mit.edu/ketterle_group/

Theses/theses.htm	


–  W. Zwerger (ed), “BEC-BCS crossover and the unitary Fermi gas”, Springer 

(2011)	





Historical overview	



•  He noticed a discontinuity in the heat capacity below 2.2 K (later 
discovered to be the lambda point = critical T)	



•  At this point the He-4 Bose condenses and forms a superfluid	



•  In 1911 he used liquid He-4 to cool mercury below 4.2 K and 
noticed its resistance vanished discontinuously (similar results in Tin 
and Lead soon followed)	



•  This was the first demonstration of superconductivity	



•  Onnes won the 1913 Nobel Prize for his work on Liquid He	



•  The discovery of superfluidity/superconductivity 
about a century ago set the early scene for a lot of 
what we’ll cover	



•  In 1908 Kammerlingh Onnes liquefied He-4 down 
to temperatures ~ 1 K	





Historical overview	


•  At the time of their discovery these new behaviours were 

recognised to be connected to quantum physics but the 
theory was just in its infancy	



•  The fact that superfluidity in He-4 and superconductivity 
occur at very similar temperatures is a ‘technical’ 
coincidence but it does make one look for connections	



•  Superfluidity and Bose-Einstein condensation (BEC) are 
bosonic phenomena so why should electrons in a metal 
behave like a superfluid??	



•  The theory of what is now known as conventional 
superconductivity took about 50 yrs to develop and was 
developed by Bardeen Cooper and Schrieffer (BCS theory)	



•  This theory described the pairing of electrons in the 
presence of a Fermi sea and these (bosonic) pairs could 
condense and form a superfluid 	
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Historical overview	


•  Cooper pairs are very different to tightly bound bosons 

which could easily form a condensate and the connection 
between the two cases is still a major field of research	



•  Up until the 1980s, many materials were shown to 
superconduct and the BCS theory had great success in 
describing their properties	



•  In 1986-7, the measured critical temperatures for 
superconductivity jumped dramatically above the LN2 
temperature with the discovery of cuprate superconductors	



•  BCS theory was found to fail for these materials in some 
important regions of the phase diagram	



•  Electrons still paired but their properties depend upon 
complexities of the (quasi-2D) structure and the pairing and 
resulting superconductivity is still not completely understood	



J. Georg Bednorz 

K. Alexander Müller 



Historical overview	


•  In the early 1970s, superfluidity was discovered in fermionic 

liquid He-3 although at much lower T than He-4 (~2 mK)	



•  It is more like a BCS superconductor than a Bose-Einstein 
condensate but it is neutral and involves p-wave pairing	



•  High Tc materials (unconventional superfluids) are beyond 
the simple BCS model  	



•  It was proposed as early as 1950 by Fritz London that 
fermionic superfluidity is a pair condensate in momentum 
space in contrast with a BEC of tightly bound pairs in real 
space	



•  In 1980 Leggett showed that these limits should be 
connected smoothly connected  	



	

 	

 	

- the BEC-BCS crossover 	





Superfluidity vs Bose condensation	


•  While these two phenomena are intimately connected, they are by no 

means equivalent	



•  In some cases one can occur without the other (eg.  an ideal Bose gas 
can form a BEC but has vanishing critical velocity while a 2D Bose gas 
can form a superfluid but not a condensate at finite T)	



•  The common thread however, is that both a BEC and a superfluid are 
described by a macroscopic wavefunction	



•  Superfluids are characterised by flow without dissipation below a 
critical velocity vc	



•  BEC is characterised by macroscopic occupation of a single state and 
occurs when the mean interparticle spacing is of the same order as the 
de Broglie wavelength (~ one particle per ħ of phase space)	



nλ3
dB ≈ 1

Ψ ∝
�

n(r)eiφ(r)



Cold Atomic gases	


•  Atomic BECs sparked a revolution in atomic/quantum physics	



•  Shortly after this, several groups began working on fermions	



Cornell & Wieman, Colorado-JILA (1995) 



Cold Fermi gases	


•  Fermions obey the Pauli exclusion principle and show no phase 

transition for an ideal (non-interacting) gas	



(S. Jochim, PhD, Innsbruck, 2004) 

Decreasing T 



Cold Fermi gases	


•  Polarised (single component) Fermi gases are essentially ideal (s-

wave suppressed by symmetry, higher order partial waves 
suppressed by the centrifugal barrier)	
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Cold Fermi gases	


•  Ideal Fermi gases readily display 

Pauli exclusion	



•  The energy departs from the 
classical value below the 
degeneracy temperature	



B. DeMarco, S.B. Papp, and D.S. Jin, Phys. Rev. Lett. 86, 5409 (2001). 

A. G. Truscott, K. E. Strecker, W. I. McAlexander, G. B. 
Partridge, and R. G. Hulet, Science 291, 2570 (2001). 



Fano-Feshbach resonances	


•  First suggested in the context of nuclear scattering (Feshbach 1958,62)	


•  Ideas applied to excited atomic systems by Fano (1961)	



•  First observed in cold atoms in 1998 at MIT (bosons – rapid losses)	



•  Observation linked to formation of weakly bound molecules	



(M. Zweirlein, PhD, MIT, 2006) 



Interacting Fermi gases - MBEC	


•  In 2003 the Innsbruck group of Rudi Grimm made a long-lived 

molecular BECs using 6Li2 dimers	



•  BEC limit of the BEC-BCS crossover with interacting fermions…	


•  Other groups too (JILA, MIT, ENS, Rice, Duke)	



(S. Jochim, PhD, Innsbruck, 2004) 



BEC-BCS crossover	


•  Focus shifted towards studying the BEC-BCS crossover using 

Feshbach resonances to control interactions	



•  Interactions determine how pairs form and this pairing dictates 
the physics	



•  The model is a 2 component Fermi gas (spin up/ spin down) in 
which s-wave interactions can be tuned to span the range above	



(M. Zweirlein, PhD, MIT, 2006) 



BEC-BCS crossover	


•  It is remarkable to find a system where the bosonic and fermionic 

limits are smoothly connected !?	



•  How can these be connected?  What happens in the middle? How 
does a BEC evolve into a BCS superfluid?	



(C. Regal, PhD, Colorado - JILA, 2006) 



Superfluidity in the BEC-BCS crossover	


•  “Smoking Gun” proof of superfluidity  -  vortices	


•  Superfluids are irrotational, angular momentum carried around 

vortices	



M.W. Zwierlein et al., Nature 435 , 1047-1051 (2005) 



BEC-BCS crossover	


•  Topics of current interest:	



–  Universality	


–  Spin imbalanced systems 	


–  Higher order pairing	


–  Exotic superfluids	


–  Fermionic mixtures	



•  These topics we’ll touch on throughout these lectures but next 
we’ll have a reminder of the basics of Fermi gases before moving 
on to some of the more interesting topics	



•  We will by no means go through everything in full detail.  Instead 
we will point to appropriate references where they exist and just 
go through some of the interesting points with a focus on their 
physical significance	



(C. Regal, PhD, Colorado - JILA, 2006) 



Ideal Fermi gas	


•  We have already introduced some of the basic ideas but now we’ll 

do some more detailed revision to provide a reminder of the key 
physics and provide a complete picture	



•  The wavefunction for two fermions (½ integer spin particles) must 
be anti-symmetric	



1 

2 

lim
b→a

ψ(a, b) =
1√
2
[ψ1,2(a, a)− ψ2,1(a, a)] = 0



Ideal Fermi gas	


•  Recall the Fermi-Dirac distribution (can be found by counting the 

ways indistinguishable particles can fill the available states, with only 
one particle per state)	



n(�) =
1

e(�−µ)/kBT + 1

•  At T = 0 this is a step 
function with a chemical 
potential equal to the Fermi 
energy (highest occupied 
state)	



µ =

�
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dN

�

S,V

= EF (at T = 0)



Ideal Fermi gas (homogeneous)	


•  In the thermodynamic limit (canonical ensemble) we have for the 

number of particles and total energy 	



	

where we have introduced the density of states 	


•  This depends on the confining potential (container) of the gas	



•  Let’s choose a box with 	



	

side lengths L	
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Ideal Fermi gas (homogeneous)	


•  The allowed states have momentum (integer n)	



•  The allowed energies are then	



•  The number of states available below a given energy is just the 
volume of a 1/8th sphere	
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Ideal Fermi gas (homogeneous)	


•  We can now differentiate this to obtain the density of states	



•  This plays an important role in the physics we’ll come across but for 
now lets look at what this means for the number of particles and 
the energy	



•  The chemical potential is usually found from the first integral which 
is generally not analytic	



g(�) =
dN̄(�)

d�
=

2π(2m)3/2L3

h3

√
�

E =
2π(2m)3/2L3

h3

�
�3/2

e(�−µ)/kBT + 1
d�

N =
2π(2m)3/2L3

h3

� √
�

e(�−µ)/kBT + 1
d�



Ideal Fermi gas (homogeneous)	


•  At T = 0, n(ε) is a step function that can be integrated up to EF	



•  Therefore the mean energy per particle is: 	



•  EF depends on the density:	



•  And there is pressure…	
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Ideal Fermi gas (homogeneous)	


•  At finite temperatures these integrals involve polylogarithm 

functions (which we’ll go through soon)	



•  Here are some of the results you will find for the chemical potential 
and energy for the classical (MB), Bose (BE) and Fermi (FD) cases	
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Ideal Fermi gas (trapped)	


•  The density of states can be found for any trapping potential using	



•  Where H is the classical hamiltonian:	



•  The integral over p is straightforward in spherical coordinates giving	



•  In the case of a harmonic trap this gives:	



g(�) =
1

h3

�
δ (�−H(r, p)) d3p d3r

H(r, p) =
p
2

2m
+ V (r̄)

g(�) =
2π(2m)3/2

h3

�

Vol(�)

�
�− V (r̄) d3r

g(�) =
�

2(�ω̄)3 where ω̄ = (ωxωyωz)



Ideal Fermi gas (trapped)	


•  The E and N integrals need to be evaluated numerically (this can be 

done in a number of ways, e.g. bisection algorithm)	



•  The chemical potential and total energy appear similar to the 
homogeneous case but quantitatively the results are quite different	



•  Trapped Bose and Fermi gases approach the ideal gas behaviour at 
much lower relative temperatures	
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Ultracold collisions	


•  The ideal Fermi and Bose gases are fairly easy to treat and many 

thermodynamic properties can be found exactly 	



•  When interactions are present however, this is no longer true	



•  You will have already encountered the Gross-Pitaevskii equation to 
describe interacting BECs yet this is an approximation which breaks 
down for very strong interactions	



•  Fermi gases can be made to interact very strongly through s-wave 
collisions near a Feshbach resonance	



•  We will now review some basic scattering theory and apply it to 
cold atom collisions and Feshbach resonances	





Ultracold collisions	


•  In cold atom collisions we usually have an isotropic interaction that 

depends only on the distance between the two atoms	



•  This allows us to work in the centre of mass frame and treat the 
collision as a single particle with reduced mass m scattering from 
the potential V(r) with momentum ħk where	



m =
m1m2

m1 +m2

m1

m2

V (r̄1 − r̄2) = V (r)

k̄1

k̄2

k = |k̄1 − k̄2|



Ultracold collisions	


•  The interaction between atoms is set by the van der Waals potential	


•  In the case of Li this is shown on the left below for the triplet and 

singlet cases	


•  Note the short range of the potential (~ 50a0) which is much shorter 

than λdB at the ultracold temperatures	



•  This greatly simplifies the problem…	



C. Chin et al., Rev. Mod. Phys. 82, 1225 (2010) 

≈



Ultracold collisions	


•  All the key physics needed to understand cold collisions and Feshbach 

resonances can be gleamed from the finite square (spherical) well…	



•  Consider the case shown to the right,	



•  The only parameters that matter are 	



	

the depth and size of the well	



•  Remember this is a 3D problem where	



•  Therefore we only need the radial Schroedinger equation for	



•  Question:   What must happen to u as r ⟶ 0	
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Ultracold collisions	


•  We won’t go through the full formalism of scattering theory but will 

just quote some of the main results	



•  The details can be found in many QM texts (eg Griffiths)	


•  When scattering from a spherical potential we generally need to find 

solutions of the Schroedinger equation of the form	



•  That is an incoming plane wave scatters to an outgoing spherical wave 
with some dependence on the scattering angle described by f(θ)	



•  This can be approached using the method of partial waves and the 
scattering of each partial wave calculated separately	



•  Where l is the angular momentum, al is the partial wave amplitude and 
Pl is a Legendre polynomial	



ψ(r, θ) = A[eikz + f(θ)
eikr

r
] for r � R

f(θ) =
∞�

l=0

(2l + 1)alPl(cos θ)



Ultracold collisions	


•  The scattering amplitude can also be expressed in terms of a phase shift 

δl for the relevant partial wave	



	

and the total scattering cross-section can be expressed as	



f(θ) =
1

k
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�
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4π
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•  At large r (>> R) δl is just the 
phase shift of a plane wave	



•  For spherical potentials, the 
amplitude of each partial wave 
is conserved	





Ultracold collisions	


•  At low energy (low k) only the l = 0 partial wave contributes… why??	



•  Conceptually this is because low 
energy particles can’t climb over 
the centrifugal barrier	



•  More precisely it can be shown	



	

which obviously vanishes quickly 
for l > 0 at small k	



•  Introducing the s-wave scattering 
length, defined by	



•  We can rewrite f0(k) for k→0 as:	



δl ∝ k2l+1

a = − lim
k→0

tan δ0
k

f0 =
1

k cot δ0 − ik
=

−a

1 + ika



Ultracold collisions	


•  So now back to the square well…	


•  In 3D we can easily show that the 

solution at large r is	



•  With k ≪ 1/R, we do not resolve the 
fine details of the potential	



•  This means λdB is large so δ0 is also small which means (c.f. hard sphere)	



•  The solution outside and inside the well is then	



•  This can now be solved by continuity of u and u’ at r = R	



u0(r) = A
eiδ0

k
sin (kr + δ0)

tan δ0 ≈ δ0 ∴ δ0 ≈ −ka

u(r) = A sin (k�r) r ≤ R
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Ultracold collisions	


•  We find –	



•  This gives the scattering length as	



•  The scattering length changes dramatically as a function of well depth	


•  It diverges and repeats periodically (same at small and large V0)	



•  What’s going on??	
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Ultracold collisions	


•  The scattering length, a, blows up when 	



•  At this point u’ → 0 and ψ = u/r now decreases at r ≫ R	


•  When the depth of the potential exceeds the critical value Vc, it can 

support a bound state…	



•  For E < 0 we expect:	



•  Using continuity of u and u’ again we find	



•  Which gives at large a: 	

 	

 	

 	

What does this mean physically?? 	



k�R = π/2 or V0 = Vc =
π2�
8mR2

;

u(r) = A sin (k�r) r ≤ R
Ce−κr r > R{u(r) =
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Bound states	


•  We can use this to estimate the binding energy	



•  This can now be visualised for ψ = u/r for the three different cases	



EB = −�2κ2

2m
≈ − �2

2ma2
for a � R

ψ(r)

r/R

a a < 0

b a = ∞
c a > 0

J. Walraven, Uni of Amsterdam (2009) 



Summary ultracold scattering 	


•  Only s-wave collisions contribute at low T (low k)	


•  The s-wave scattering length tells us about the phase shift of ψ (or u)	



•  Positive a  	

⇒ 	

repulsive interaction, bound state near threshold	



•  Negative a  	

⇒ 	

attractive interaction, virtual state near threshold	



(M. Zweirlein, PhD, MIT, 2006) 

a/R

R
�
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Cold atom scattering	


•  Q:  Can these phenomena occur for atoms interacting via a van der 

Waals potential ??	



•  A:  Yes, using a Feshbach resonance…	



•  Note:  λdB typically ≳ n-1/3 and the range of V(r) typically ≪ n-1/3	



•  This is a classic low energy scattering scenario where we don’t resolve 
the details of  V(r)	



V (r)



Feshbach resonances	


•  In a nutshell, hyperfine coupling mixes different combinations of internal 

atomic states (channels)	


•  These channels have different magnetic moments and can therefore be 

tuned relative to eachother by applying a magnetic field  	



•  Effectively equivalent to tuning the depth of a finite square well…	


•  Can tune scattering length through a pole and couple to a two-body 

bound state – introducing a bound state always leads to a pole in a	



(M. Zweirlein, PhD, MIT, 2006) 



BEC-BCS crossover	



•  The simplest way to get a feel for what’s happening in the BEC-BCS 
crossover is to imagine a gas of spin-up and spin-down fermions 
that interact with each other via a finite square well	



•  We effectively have the ability to tune the depth of the potential 
starting from shallow (where the particles feel a weak attraction) to 
being deep enough to just support a bound state (where a → ∞) to 
being even deeper such that the state is tightly bound and the two 
fermions act like a composite boson	



•  With this picture in mind we can now investigate what happens to a 
gas of atoms when the interactions are tuned in this way…	





BEC-BCS crossover in Li-6	



•  We saw yesterday that turning up the depth of a finite square well 
leads to a bound state and pole in the scattering length	



•  In Li-6 (and also other atoms) the same features can be observed 
with a Feshbach resonance	



•  Li has an unusually broad 
resonance at 834 G which 
means the scattering length 
and hence EB can be tuned 
with great precision	



•  An “ideal” realisation of the 
BEC-BCS crossover	



EB a 

BEC BCS 

(M. Zweirlein, PhD, MIT, 2006) 



BEC-BCS crossover	


•  This image shows an approximate phase diagram of the crossover	


•  We can tune across it simply by varying T and the magnetic field	



(Sa de Melo, Phys. Today, Oct 2008) 



BEC vs BCS superfluidity…	


•  These two regimes can be visualised using dancers…	



http://jila.colorado.edu/~jin/publications/images.html 

BEC of bound pairs Loosely bound Cooper pairs 



BCS limit - Cooper Pairing	



•  We will now have a look at the properties of a gas in the different 
regions of the phase diagram	



•  The BCS regime is achieved when a is small and negative (weak 
attraction between spin-up/spin-down fermions) and there is no 
two-body bound state	



•  However, pairs can still form and condense into a superfluid (BCS) 
through a mechanism known as the Cooper instability	



•  We will now go through the physical arguments that lead to 
Cooper pairing and show how this gives a pairing gap	





Bound states again… 	


•  To understand Cooper pairing (and BCS superfluidity) we need to 

revisit the scattering problem and the conditions for achieving a 
bound state	



•  For reasons that will make sense later we’ll look at the finite square 
well problem in 2D (as opposed to 3D)	
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r
R
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•  We will be interested 
in weakly  bound 
states of size	



•  The potential must 
provide enough energy 
to change ψ’ over a 
distance R	
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Two-body bound states – 2D	


•  In 2D the (radial) Schroedinger equation outside the well is:	



•  The solution is the modified Bessel which	


•  When r is smaller (R < r < 1/κ) we can ignore κr which gives	



•  This gives a logarithmic wavefunction which we normalise to 1 at R	



•  Inside the well ψ is ~ constant and rψ’ changes from 0 to 1/log(κR) 	



•  The energy cost for this must be	
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Two-body bound states – 2D	



•  Note this is a very weakly 
bound state, depending 
exponentially on the small V	



•  The size of the bound state is 
exponentially large	



•  Unlike the 3D case, a bound 
state always exists for 
arbitrarily small V !!	



•  Rearranging this to find κ:	



•  The binding energy is then	



EB ≈ ERe
−cER/V

κ ≈ 1

R
e−cER/V (c ∼ 1)

(Ketterle & Zweirlein, Ultra-cold Fermi gases, Varenna 2007) 



Two-body bound states – nD	


•  So in 2D (and 1D) there will always be a two-body bound state for 

arbitrarily weak interaction	



•  In 3D the attractive potential needs to exceed a critical depth before 
it can admit a bound state	



•  How is it then that Cooper pairing which happens in 3D in the limit 
of very weak attractive interactions can happen??	



•  In 2D pairing can be understood at the two particle level which is 
clearly not the case in 3D however, and we therefore expect that 
pairing in 3D systems must somehow be a many-body effect	



•  Our next task is to identify what it is that leads to Cooper pairing 
(the bound states we’ve just studied will turn out to be a big help…)	





Cooper Pairing	


•  In a low temperature (T  0) Fermi gas, elastic collisions are 

suppressed by Pauli exclusion as there are limited free states for 
particles to scatter into	



•  Consider two fermions with momenta on top of the Fermi sea	



•  The only states available for these particles to scatter into will be in a 
narrow shell near kF	



•  In the small region near the Fermi 
surface the density of states is 
roughly constant, equal to	



•  We also get a constant density of 
states in 2D	



•  This has become a 2D problem…	



g3D(EF )

(Ketterle & Zweirlein, Ultra-cold Fermi gases, Varenna 2007) 



Cooper Pairing	


•  This simple picture gives an idea of why pairing might occur at the 

Fermi surface	



•  Imagine turning on the interaction from the top of the Fermi sea 
downwards, the lower energy particles will also form pairs	



•  The proper inclusion of all pairs in the many-body problem was 
achieved by Bardeen, Cooper and Schrieffer (1957) and is known as 
the BCS theory	



•  The end result is that the energy saving due to pairing is	



•  This is known as the pairing gap, it is the energy saved by forming 
pairs (note it is exponentially weak as we saw for 2D scattering)	



•  So we can understand Cooper pairing as a many-body effect which 
modifies the density of states to be constant like in 2D!!	



∆ =
8

e2
EF e

−π/2kF |a|



Weakly Attractive Fermi gas (a     0-)	


•  With weak attractive interactions, it is possible to calculate changes 

to the properties of the cloud perturbatively	



•  We will assume here that the local density approximation is valid	



•  The chemical potential also has a spatial dependence	



•  The density profile has the same shape as the ideal gas with a first 
order correction to the radius	





Molecular BEC limit   (a     0+)	


•  On the opposite side of the Feshbach resonance,  we produce tightly 

bound molecules that behave like point-like bosons	



•  This means they follow the GP equation etc etc	


•  The dimer-dimer (4-body) scattering problem is not obvious 

however, and was solved by Petrov et al., PRL (2004)	



•  When this scattering length is included in the GP equation the 
correct behaviour is recovered	



•  The bound molecules produced at a Feshbach resonance have a 
characteristic size of a much larger than r0  	



•  This is an important factor leading to their surprisingly long lifetimes	



EB =
�2
ma2



Weakly bound molecules	



•  One of the most remarkable features of fermion-fermion dimers 
formed near a Feshbach resonance (which came as a surprise) is 
their long lifetime (order 10 s) compared to boson pairs (1 ms)	



•  These molecules are 
formed in the highest 
lying vibrational state 
and so should be 
highly unstable (any 
collision could lead to 
decay to the lower 
lying states)	



C. Chin et al., Rev. Mod. Phys. 82, 1225 (2010) 



Weakly bound molecules	


•  However, Pauli exclusion comes to the rescue..	


•  Molecular decay to a low lying vibrational level (size ~ r0), requires  

three fermions coming together in a volume ~ r0
3	



•  Two of these fermions are necessarily identical so this process will 
be Pauli suppressed by a factor involving r0/a	



•  Petrov showed that the suppression factors are:	



(Petrov et al., Ultra-cold Fermi gases, Varenna 2007) 

r0

αad ∝ (r0/a)
3.33

αdd ∝ (r0/a)
2.55

(Weaker binding = Longer lifetimes !?) 



Evaporation to MBEC	


•  These long lived molecules with small binding energy allow a neat 

way to produce a molecular BEC shown by the Innsbruck group by 
simply evaporating atoms (Chin, PRA 2004)	



•  How does this work ??   …  Thermodynamics of course !!	



•  Consider the thermodynamic equilibrium of a mixture of trapped 
atoms and molecules with binding energy Eb = ħ2/ma2 	



•  Both molecules and atoms have the 
same harmonic confinement frequency	



•  Consider 3 types of particles spin_up/
down atoms and molecules	



•  We also assume particle conservation	


N↑, N↓,M

(Grimm, Ultra-cold Fermi gases, Varenna 2007) 

NTot = N↑ +N↓ + 2M



Atom-Molecule equilibrium	


•  We solve this problem by writing down the total partition function 

(the product of each component)	



	

 and then  minimizing the Helmholtz Free Energy	



•  If we assume 	

 	

 	

 	

the total partition function can be 
written as below where we have divided it by the factorial of the 
number of atoms/molecules… (why ??) 	



•  Note that the molecular binding energy is also included for the M 
molecules	



Z =
�

i

eEi/kBT ZTot =
�

j

Zj

F = −kBT log (ZTot)

N↑ = N↓ = N

ZTot =
Z2N
N ZM

M e−MEb/kBT

(N !)2M !



Atom-Molecule equilibrium	


•  We can then take the log of the partition function, invoke Stirling’s 

rule for large N	



•  Eventually we’ll get to an expression for Log(ZTot) that we can 
differentiate w.r.t. N giving	



•  Setting this to zero (for the minimum) we can rearrange it to show 	



	

where we have introduced the phase space density	



•  Note we have ignored Fermi degeneracy here so this analysis is 
really only valid for high T (> TF)	



•  Nonetheless it shows that as we cool below Eb, the cloud will 
become molecular…	



log (N !) = N log (N)−N

φM = φ2
NeEb/kBT

φi = Ni/ZNi

dF

dN
= −kBT (2 log (ZN/N)− log (ZM/M) + Eb/kBT )



Atom-Molecule equilibrium	


•  Below is a plot showing typical behaviours of the molecule fraction 

as the temperature is lowered during evaporation	



•  The molecular fraction increases to unity at low T - for free !!	
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Unitarity Limit	


•  We have seen that the s-wave scattering length a diverges at a 

Feshbach resonance	



•  At this point it becomes much larger than any other relevant 
physical length scale in the problem ie.  	



•  For this reason it no longer plays a role in the physics…	



•  The only parameters that determine the behaviours are the Fermi 
energy and the mean interparticle separation	



•  At T = 0 the chemical potential is scaled by a universal constant	



•  Applying the local density approximation for the trapped gas gives	



•  Other properties of the gas are scaled universally in a similar way	



a � n−1/3,λdB ...

lim
T→0

µTr. =
�

ξEF

lim
T→0

µHom. = ξEF (where) ξ ≈ 0.385



Summary of all regimes	


•  The key properties of all three regimes are summarised below	


•  I’m not going to dwell on how each of these are derived as you can 

look them up and read about them in a variety of references	



•  These three regimes are smoothly connected as we’ve discussed 
theoretically	



•  What does this mean practically ???	



(Ketterle & Zweirlein, Ultra-cold Fermi gases, Varenna 2007) (ξ = 1 + β)



Structure of an interacting Fermi gas	


•  We now have a simple picture of a two component Fermi gas 

interacting via s-wave scattering in the BEC-BCS crossover	



•  Absorption images show the change in density profile (cloud gets 
bigger and more energetic on BCS side of resonance)	



•  No obvious way to distinguish pairs from free atoms which is 
where our research comes into play…	



BEC Unitary BCS 

650 G 991 G 834 G 



Universal behaviours	


•  It has also been shown that when the scattering length is large the 

physical properties of the gas can become universal	



•  A number of exact relations have been derived for gases in this 
universal regime which are surprisingly simple in that they are 
analytic results that link microscopic and macroscopic quantities	



•  These have become known as the Tan relations after their inventor	



•  Some examples are…	



Tan, (2005) 



Universal behaviours	


•  Note that all of these relations involve the contact parameter C	


•  This single parameter contains all of the many-body physics…	



•  So what is it ??	



•  C quantifies the number of closely spaced pairs	



Braaten, Physics 2, 9 (2009) 

BEC Unitary BCS 



Universal contact 	


•  Our expression for the structure factor can easily be rearranged to 

give the contact as a function of S(k)	



•  This expression 
appears to hold  
over a surprisingly 
broad region of the 
Feshbach 
resonance…	



!"

#"

$!"

$#"

%!"

&$'#"&$'!"&!'#"!'!"!'#"$'!"$'#"
$(!"#

$I
NkF

I
NkF

=

�
k

kF

�
4S↑↓(k)

1− 4
πka

Kuhnle et al., (2010) 



Universal contact – T dependence 	


•  At unitarity 	

 	

 	

 	

so the contact simplifies to	



•  This is the first 
measure of the 
temperature 
dependence of the 
contact in a unitary 
gas	



•  Shows quantitatively 
the build up of pair 
correlations	
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Kuhnle et al., Phys Rev Lett (2011) 
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