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One dimension is different!

* To be covered in these lectures:
— Absence of true Bose-Einstein condensation
— Strongly-correlated many-body physics with a dilute gas
— Bosons play fermions
— Superfluid or not superfluid (or maybe both?)
— Schrodinger cats made robust
— [Stirring up solitons]



Interaction strength and dimensionality
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Expect 1D physics when  |n| < 1
The 1D gas can be dilute even when ~ > 1 -> strong correlation



Phase fluctuating condensate?

. Bogollubov s trick:

(x) = ¢(x) + 5 ()

This obviously works if BEC is present (3D).

However, it is sufficient to have small density
fluctuations (works in 1D without BEC):

plz) = Pl (z)Y(z) = po + 5p(z)

The (fluctuating) phase is then “defined” by

Y(x) = /pe’
Y. Castin, Simple theoretical tools for low dimension Bose gases, J.
Phys. IV France, 116, 89 (2004) arXiv:0407118

V. N. Popov, Functional Integrals in Quantum Field Theory and
Statistical Physics, (Reidel, Dordrecht, 1983).



Bosons play fermions

The Lieb-Liniger model and the Tonks-
Girardeau gas



Tonks-gas — Experiments

letters to nature

Tonks—Girardeau gas of ultracold
atoms in an optical lattice

Belén Paredes', Artur Widera' -, Valentin Murg', Olaf Mandel' ",
Simon Félling'~*~, Ignacio Cirac', Gora V. Shiyapnikov',
Theodor W. Hinsch'-* & immanuel Bloch'~*~

MPQ Garching

other experiments:
T. Esslinger (Zurich)
W. Phillips (NIST)

D. Weiss (PSU), y~5.5

R. Grimm (Innsbruck): confinement
induced resonance!
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1D Bose Gas — Lieb-Liniger model

H = sz +291DZ5 —LI?]

1<7J

1D Bosons with repulsive 0 interactions

Ground- and excited-state wavefunctions exactly known
from Bethe ansatz [Lieb, Liniger (1963)]

Interaction parameter N = m 91b

heon
For 77 — OO, problem is mapped exactly to
(Tonks-Girardeau gas) [Girardeau (1960)]

Ring geometry provides periodic boundary conditions



Consider 0<z;1<x9---<zxny <L

Lieb-Liniger model: wave function

Inside: 72 52
“om 2 gV =B

Boundary conditions are provided by
— Interactions

— Periodicity in the box

Bethe ansatz:
N
Y(x1,...,on) =Y a(P)Pexp(i y kjz;)
P j=1

P is a permutation of the set {1k} = k1,k2,... kN
Just one quasimomentum per particle (!)
Model is integrable, check Yang-Baxter equation



Bose-Fermi mapping

“In 1D, there is no distinction between Bosons and Fermions”

Strong repulsive interactions for bosons have the same effect as the Pauli
exlusion principle for fermions.

The 1D Bose gas maps one-to-one to a gas of spinless fermions
Fermions Bosons

¢ = |p" |

Bosons with but
finite interactions map to

spinless fermions with

short-range interactions

Cheon and Shigehara, 1999
Girardeau, 1960




Pseudopotential in the Fermionic picture

Sen’s pseudopotential generates correct energy levels to
first orderin 1/y

2h2 ,
V(xy,xp) = _Ré (r1 —x>) [D.Sen 1999]

generalization for arbitrary vy:

V($17$27$/27x/1) - - 0
mc

Granger and Blume [2004],

Girardeau and Olshanii [2004],
Brand and Cherny [2005]

472 (21 + xo — xh — 2
( 2 1) §' (w1 —22) 8 (¢ —a5)

This can be used to apply common methods of fermionic many-body theory, e.g.
* Hartree-Fock

» diagrammatic many-body perturbation theory
* Random-phase approximation



The nature of Bethe-ansatz solutions:
Quasi-momenta and Fermi sphere

1D Fermi sphere, noninteracting Fermi gas (~Tonks)

Kk

— :¢¢¢%¢¢¢: 1

Bethe Ansatz solution, finite interaction

:Wg .

2
Total energy: E= ;—m > K
k

Total momentum: p— th
k



Lieb-Liniger ground states
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Excitation spectrum for the Lieb-Liniger model
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Superfluid or not?

Or maybe both?



1D Bose gas on aring

X What are the superfluid properties of the
Bose gas on the ring at zero temperature?

e non-classical rotational inertia or Hess-
Fairbank effect:

Does the fluid in equilibrium take part
in small (infinitesimal) rotations of the
container?

eMetastability of currents

Circumference: L=2n R
Once we have established a (ring)

current: Is it stable? How and on
We work with the Lieb-Liniger model, which time scale will it decay to the

i.e. Bosons with contact interactions in ground state?
one dimension

We need to understand the excitation spectrum
and the likeliness of transitions!



Energy

Low-lying excitation spectrum

Translations of the ground state

Every particle has acquired one uni
of momentum in the periodic box.
This is a centre-of-mass translation

° with E=P2 /(2M)! ° .
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Energy
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Energy

Low-lying excitation spectrum

Generic case

Dense spectrum for N >> 1
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Varying the interaction strength

The lowest
energy
excitation
energies
from the
exact
Bethe-
Ansatz
equations

Yang and Yang (1969), Brand (2004)
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Transformation to moving frame

e Atransformation into a translating (rotating) frame is

a gauge transformation and does not change the
internal nature of eigenstates.

* Momentum and energy change according to the
well-known rules of Galilean transformation

X'=x-vt
X

P/:P+MU7~ \ VV:R(D"

E' = E — Pv, + —Muv?




Persistent currents in equilibrium
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For small driving velocities the 1D Bose gas on a ring with a/k,

repulsive interactions does not take part in the motion. This is
known as the Hess-Fairbank effect! k =m~NJ/L
Therefore it is 100% superfluid. °



Metastability of currents

How can a current-carrying state decay?
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A small deviation of the trapping potential (stationary in Lab frame) breaks translational
symmetry and couples to lower momentum states (Energy is conserved)!




Frame transformation - frictional force

In the frame where the fluid is at rest, we have a moving impurity

Energy
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The moving impurity dissipates energy by exciting excitations in the fluid and experiences
a drag force. The rate of dissipation can be calculated in linear-response theory




Drag Force

Consider a heavy impurity, moving with constant velocity in the
1D medium of particles and interacting with them by V,(x, t) = gié(af; — vt)

By definition £ = —F, - v

Drag Force as a generalization of the Landau criterion for
superfluidity: it should be zero to prevent energy dissipation!

F =0 ???



Drag Force

The linear response theory yields for the resulting drag force:

Fy = ;()gi2 /+OO S(q

dqgq
0

S(q,w) = > (0lpgIn)| %6 (iw — En + Eo)

is the dynamic structure factor (q/ki)S(q,w)e / N
W/ ST
3 C()+
Example:TG gas 2 v

0 0.5 1 1.5 2 2.5

momentum q/ke



Dynamic Structure factor

* Whatis known? °|
— Limits of no interactiony =10 py 3
and strong interactiony =+ o0 er 2|

p—

are well understood

— Perturbation theory at large coupling T E Y
PRA and first order expansion in 1/y (b) e

| 2 . Brand and Cherny (2005)
1 8 v: —v? 1
s(A,v) = — (1 + ) + ~In + 0 ( ) Cherny and Brand (2006)

4\ 2y + — 2
— Luttinger liquid theory
gives power-law scaling at small m
Astrakharchik and Pitaevskii (2004)
— Critical exponents near singularities
Imambekov and Glazman (2008)
— Numerical evaluation of the algebraic Bethe ansatz
Caux and Calabrese (2005)



Interpolating the Dynamic Structure Factor

vy =10, =2k,

F(Q -+ /,l.+ —_ ,j,_) (1/2 —_— 1/3)11._ 0.8 |
F(l + /l_)r(l o /[,+) (yi — 1/2)[1.+ Ll

s(A,v) = 2\

1
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Cherny and Brand, PRA (2009); JP conf. ser. (2008)



Drag force = dissipation of supercurrent

Dimensionless drag force as a function of velocity
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Only in the weak interaction (large density) limit y -> 0 does

the gas maintain persistent currents!
Cherny, Caux, and Brand, PRA (2010)



Schrodinger’s cat made robust



Possibility of superposition states?
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Energy

Rotating ring with delta barrier (cf. Josephson Junction)

i h2 8 Q 2 N

A single atom

15} S .,./'/'/
\'\'\.\ 7 Many-body wave function for g=0
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Interacting particles: exact diagonalisation

Energy gap between ground and first excited state
as a function of interaction strength

y
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N=5. Exact diagonalisation with 20 modes. e/L = 0.008E,

Hallwood, Ernst, Brand, PRA 2010



Weakly-interacting particles: NOON states

e Hamiltonian in momentum basis:

H = 2N af af aran,d(ky + ko — ks — k{X)

 For weak interactions, two modes suffice:
NooN state has energy gap that scales exponentially with N!

{@h)¥ + (@)™} Ivac) = [N, 0) + o, V)



Strongly-interacting particles:
Tonks-Girardeau gas
* The excitation spectrum is the same as that of non-

Interacting Fermions

* The gap energy is determined by the Umklapp
excitation:

AE =~ e/ L isindependent of N!

q . c




Rotational Tonks-Girardeau cat
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Hallwood, Ernst, Brand, PRA 2010



Tonks-Girardeau cats

* TG cats are robust against single-particle loss!

* Quality of cat after loss of one atom with momentum

k: Qi = 2¢/P(0— k)P(K — k)
5 Y 0 5
* Define robustness ! - 10 1
as the average .
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Hallwood, Ernst, Brand, PRA 2010; Cooper, Hallwood, Dunningham, Brand, PRL 2012




Stirring up solitons



Can you wind/unwind a ring current by
following the type Il dispersion curve?

(€,,:,(A)-V Q)/(4))

Kanamoto, Carr, Ueda, PRL 2008, PRA 2009, 2010



Add Iobal symmetry breaking potentlal
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Adiabatic passage through metastable states
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One dimension is different!

* To be covered in these lectures:
— Absence of true Bose-Einstein condensation
— Strongly-correlated many-body physics with a dilute gas
— Bosons play fermions
— Superfluid or not superfluid (or maybe both?)
— Schrodinger cats made robust
— Stirring up solitons
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