Physics of ultracold Bose gases in onedimensional and ring traps

Joachim Brand Massey University, New Zealand

Lecture II - Victorian Summer School in Ultracold Physics (VSSUP) 2012

One dimension is different!

- To be covered in these lectures:
 - Absence of true Bose-Einstein condensation
 - Strongly-correlated many-body physics with a dilute gas
 - Bosons play fermions
 - Superfluid or not superfluid (or maybe both?)
 - Schrödinger cats made robust
 - [Stirring up solitons]

Interaction strength and dimensionality

Phase fluctuating condensate?

• Bogoliubov's trick:

$$\hat{\psi}(x) = \phi(x) + \delta \hat{\psi}(x)$$

This obviously works if BEC is present (3D).

However, it is sufficient to have small density

fluctuations (works in 1D without BEC):

$$\hat{\rho}(x) = \hat{\psi}^{\dagger}(x)\hat{\psi}(x) \approx \rho_0 + \delta\hat{\rho}(x)$$

The (fluctuating) phase is then "defined" by

$$\hat{\psi}(x) = \sqrt{\hat{\rho}} e^{\hat{\theta}}$$

Y. Castin, Simple theoretical tools for low dimension Bose gases, J.
Phys. IV France, 116, 89 (2004) arXiv:0407118
V. N. Popov, Functional Integrals in Quantum Field Theory and Statistical Physics, (Reidel, Dordrecht, 1983).

Bosons play fermions

The Lieb-Liniger model and the Tonks-Girardeau gas

Tonks-gas – Experiments

letters to nature

Tonks–Girardeau gas of ultracold atoms in an optical lattice

Belén Paredes¹, Artur Widera^{1,2,3}, Valentin Murg¹, Olaf Mandel^{1,2,3}, Simon Fölling^{1,2,3}, Ignacio Cirac¹, Gora V. Shlyapnikov⁴, Theodor W. Hänsch^{1,2} & Immanuel Bloch^{1,2,3}

MPQ Garching

other experiments:

T. Esslinger (Zürich)

W. Phillips (NIST)

D. Weiss (PSU), γ~5.5

R. Grimm (Innsbruck): confinement induced resonance!

$$\begin{split} \gamma \approx \frac{\text{interaction energy}}{\text{kinetic energy}} \\ \gamma \simeq \frac{m}{\hbar} \frac{\omega_{\rho}}{n_{1\text{D}}} a_{3\text{D}} \end{split}$$

up to $\gamma_{eff} \sim 200$

1D Bose Gas – Lieb-Liniger model

$$H = \sum_{i} \frac{p_{i}^{2}}{2m} + 2g_{1D} \sum_{i < j} \delta(x_{i} - x_{j})$$

- 1D Bosons with repulsive δ interactions
- Ground- and excited-state wavefunctions exactly known from Bethe ansatz [Lieb, Liniger (1963)]
- Interaction parameter $\gamma = \frac{m}{\hbar^2} \frac{g_{1\mathrm{D}}}{n}$
- For $\gamma \to \infty$, problem is mapped exactly to free Fermi gas (Tonks-Girardeau gas) [Girardeau (1960)]
- Ring geometry provides periodic boundary conditions

Lieb-Liniger model: wave function

Consider
$$0 \le x_1 \le x_2 \dots \le x_N \le L$$

- Inside: $-\frac{\hbar^2}{2m}\sum_i \frac{\partial^2}{\partial x_i^2}\psi = E\psi$
- Boundary conditions are provided by
 - Interactions
 - Periodicity in the box
- Bethe ansatz:

$$\psi(x_1,\ldots,x_N) = \sum_P a(P)P\exp(i\sum_{j=1}^N k_j x_j)$$

P is a permutation of the set $\{k\} = k_1, k_2, \ldots, k_N$

- Just one quasimomentum per particle (!)
- Model is integrable, check Yang-Baxter equation

Bose-Fermi mapping

"In 1D, there is no distinction between Bosons and Fermions"

Strong repulsive interactions for bosons have the same effect as the Pauli exlusion principle for fermions.

The 1D Bose gas maps one-to-one to a gas of spinless fermions

 $\phi^{\mathsf{B}} = |\phi^{\mathsf{F}}|$

Bosons with strong but finite interactions map to spinless fermions with weak short-range interactions

Pseudopotential in the Fermionic picture

Sen's pseudopotential generates correct energy levels to first order in $1/\gamma$

$$V(x_1, x_2) = -\frac{2\hbar^2}{mc} \delta''(x_1 - x_2)$$
 [D. Sen 1999]

generalization for arbitrary γ :

$$V(x_{1}, x_{2}, x_{2}', x_{1}') = -\frac{4\hbar^{2}}{mc} \delta\left(\frac{x_{1} + x_{2} - x_{2}' - x_{1}'}{2}\right) \delta'(x_{1} - x_{2}) \delta'(x_{1}' - x_{2}')$$

Granger and Blume [2004],
Girardeau and Olshanii [2004],
Brand and Cherny [2005]

This can be used to apply common methods of fermionic many-body theory, e.g.

- Hartree-Fock
- diagrammatic many-body perturbation theory
- Random-phase approximation

The nature of Bethe-ansatz solutions: Quasi-momenta and Fermi sphere

Lieb-Liniger ground states

The quasi momentum distribution in the ground state is deformed from the simple Fermi-sphere picture at finite (weaker) interactions

FIG. 2. The distribution function of "quasi-momenta" in the ground state for various values of $\gamma = c/\rho$. The vertical dashed lines are the cutoff momenta K (cf. Fig. 1). When $\gamma = \infty$, $f = (2\pi)^{-1}$. For all γ , $\int_{-K} f(k) dk = \rho$.

Lieb, Liniger, 1963

Excitation spectrum for the Lieb-Liniger model

Type II excitations can be identified with dark solitons!

Superfluid or not?

Or maybe both?

1D Bose gas on a ring

Circumference: $L = 2 \pi R$

We work with the Lieb-Liniger model, i.e. Bosons with contact interactions in one dimension

What are the superfluid properties of the Bose gas on the ring at zero temperature?

• non-classical rotational inertia or Hess-Fairbank effect:

Does the fluid in equilibrium take part in small (infinitesimal) rotations of the container?

Metastability of currents

Once we have established a (ring) current: Is it stable? How and on which time scale will it decay to the ground state?

We need to understand the excitation spectrum and the likeliness of transitions!

Low-lying excitation spectrum

Low-lying excitation spectrum (yrast states)

Low-lying excitation spectrum

Generic case

Varying the interaction strength

Transformation to moving frame

- A transformation into a translating (rotating) frame is a gauge transformation and does not change the internal nature of eigenstates.
- Momentum and energy change according to the well-known rules of **Galilean transformation**

$$P' = P + Mv_r$$

$$E' = E - Pv_r + \frac{1}{2}Mv_r^2$$

$$V_r = R \omega_r$$

Persistent currents in equilibrium

Metastability of currents

How can a current-carrying state decay?

symmetry and couples to lower momentum states (Energy is conserved)!

Frame transformation - frictional force

In the frame where the fluid is at rest, we have a moving impurity

a **drag force**. The rate of dissipation can be calculated in linear-response theory

Drag Force

Consider a heavy impurity, moving with constant velocity in the 1D medium of particles and interacting with them by $V_{\rm j}(x,t) = g_{\rm j}\delta(x-vt)$ By definition $\dot{E} = -{\bf F}_{\rm v}\cdot{\bf v}$

Drag Force as a generalization of **the Landau criterion for superfluidity:** it should be zero to prevent energy dissipation!

$$F_{v} = 0$$
 ???

Drag Force

The linear response theory yields for the resulting drag force:

Dynamic Structure factor

- What is known?
 - Limits of no interaction $\gamma = 0$ and strong interaction $\gamma = + \infty$ are well understood
 - Perturbation theory at large coupling PRA and first order expansion in $1/\gamma$

$$s(\lambda,\nu) = \frac{1}{4\lambda} \left(1 + \frac{8}{\gamma}\right) + \frac{1}{2\gamma} \ln \frac{\nu^2 - \nu_-^2}{\nu_+^2 - \nu^2} + O\left(\frac{1}{\gamma^2}\right) \text{ Brand all formula is a straight of the set of$$

- Luttinger liquid theory gives power-law scaling at small ω
 Astrakharchik and Pitaevskii (2004)
- Critical exponents near singularities
 Imambekov and Glazman (2008)
- Numerical evaluation of the algebraic Bethe ansatz
 Caux and Calabrese (2005)

Brand and Cherny (2005) Cherny and Brand (2006)

Interpolating the Dynamic Structure Factor

Drag force = dissipation of supercurrent

Dimensionless drag force as a function of velocity

Only in the weak interaction (large density) limit $\gamma \rightarrow 0$ does the gas maintain persistent currents!

Cherny, Caux, and Brand, PRA (2010)

Schrödinger's cat made robust

Possibility of superposition states?

Rotating ring with delta barrier (cf. Josephson Junction)

$$H = \sum_{i=1}^{N} \left[\frac{\hbar^2}{2M} \left(-i \frac{\partial}{\partial x_i} - \frac{\Omega}{L} \right)^2 + \epsilon \delta(x_i) + g_1 \sum_{i < j}^{N} \delta(x_i - x_j) \right]$$

Many-body wave function for g=0 at $\Omega = \pi$

$$|\Psi_{\rm NI}\rangle ~~\sim~ \prod_{i=1}^{N} \left(\phi_0(x_i) + \phi_1(x_i)\right)$$

Interacting particles: exact diagonalisation

Energy gap between ground and first excited state as a function of interaction strength

Hallwood, Ernst, Brand, PRA 2010

Weakly-interacting particles: NOON states

• Hamiltonian in momentum basis:

$$\begin{split} H_{K} &= \sum_{k} \frac{\gamma}{2} \left(2\pi k - \Omega \right)^{2} \hat{a}_{k}^{\dagger} \hat{a}_{k} \\ H_{B} &= \epsilon \sum_{k_{1},k_{2}} \hat{a}_{k_{1}}^{\dagger} \hat{a}_{k_{2}} \\ H_{I} &= \frac{g_{1}}{2L} \sum_{k_{1},k_{2},k_{3},k_{4}} \hat{a}_{k_{1}}^{\dagger} \hat{a}_{k_{2}}^{\dagger} \hat{a}_{k_{3}} \hat{a}_{k_{4}} \delta(k_{1} + k_{2} - k_{3} - k_{4}), \end{split}$$

• For weak interactions, two modes suffice: NooN state has energy gap that scales exponentially with N!

$$\left\{ (a_0^{\dagger})^N + (a_1^{\dagger})^N \right\} |\text{vac}\rangle = |N, 0\rangle + |0, N\rangle$$

Strongly-interacting particles: Tonks-Girardeau gas

- The excitation spectrum is the same as that of noninteracting Fermions
- The gap energy is determined by the Umklapp excitation:

 $\Delta E \approx \epsilon/L$ is independent of N!

Rotational Tonks-Girardeau cat

Hallwood, Ernst, Brand, PRA 2010

Tonks-Girardeau cats

- TG cats are robust against single-particle loss!
- Quality of cat after loss of one atom with momentum k: $Q_k = 2\sqrt{P(0-k)P(K-k)}$
- 10⁰ 10^{-2} 10^{2} • Define *robustness* as the average 0.8 0.8 $R = \sum_k Q_k n_k / N_k$ 0.6 0.6 2 $(\mathbf{X})_{d}^{0.4}$ 0.4 0.2 0.2 0L -5 0 5 10 K0 10^{-4} 10^{-2} 10^{2} 10^{0} g_1/E_0L

Hallwood, Ernst, Brand, PRA 2010; Cooper, Hallwood, Dunningham, Brand, PRL 2012

Stirring up solitons

Can you wind/unwind a ring current by following the type II dispersion curve?

Kanamoto, Carr, Ueda, PRL 2008, PRA 2009, 2010

Fialko, Coralie-Delattre, Brand, Kolovsky 2012

Adiabatic passage through metastable states

One dimension is different!

- To be covered in these lectures:
 - Absence of true Bose-Einstein condensation
 - Strongly-correlated many-body physics with a dilute gas
 - Bosons play fermions
 - Superfluid or not superfluid (or maybe both?)
 - Schrödinger cats made robust
 - Stirring up solitons

Bibliography

- Y. Castin, **Simple theoretical tools for low dimensional Bose gases**, J. Phys. IV France, 116, 89 (2004) arXiv:0407118
- V. N. Popov, Functional Integrals in Quantum Field Theory and Statistical Physics, (Reidel, Dordrecht, 1983).
- E. H. Lieb, W. Liniger, Exact Analysis of an Interacting Bose Gas. I. The General Solution and the Ground State, Phys. Rev. 130, 1605 (1963).
- A. J. Leggett, Quantum Liquids: Bose condensation and Cooper pairing in condensed-matter systems. Oxford: Oxford University Press, 2006.
- A. Y. Cherny, J.-S. Caux, and J. Brand, **Theory of superfluidity and drag** force in the one-dimensional Bose gas, Frontiers of Physics, 7, 54, (2011).
- D. Hallwood, T. Ernst, and J. Brand, **Robust mesoscopic superposition of** strongly correlated ultracold atoms, Phys. Rev. A, 82 063623, (2010).
- J. Cooper, D. Hallwood, J. Dunningham, and J. Brand, Robust Quantum Enhanced Phase Estimation in a Multimode Interferometer, Phys. Rev. Lett., 108, 130402, (2012).
- O. Fialko, M.-C. Delattre, J. Brand, and A. R. Kolovsky, Nucleation in finite topological systems during continuous metastable quantum phase transitions, Phys. Rev. Lett., 108, 250402 (2012).