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"Since the fabric of the Universe is most perfect

and is the work of a most wise Creator, nothing

whatsoever takes place in the Universe in which

some relation of maximum and minimum does
not appear.”

Leonard Euler




Variational principle in classical mechanics

 Hamilton’s principle (stationary action principle):

— classical action

stal [ a(v,a0),0d

— Variation with respect to the trajectory function
oS

dq(t) !

— Leads to the Euler-Lagrange equations (and classical
mechanics)
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Variational principle in quantum mechanics

Find approximate ground state by minimizing

. (| H|T)
=T
Unrestricted variation yields the Schrodinger equation
de
— =0 H|\V) =¢|V
=0 — H|Y) = [v)

As an approximation method, we choose a physically reasonable ansatz to
parameterize the wave function W[\q,.. ]
andsolve  de 0

O\

Any approximate solution yields an upper bound to the ground state
energy and is ‘optimal’ as it is the minimum possible in the variational
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Constraints

Often we may want to introduce constraints to the wave function, e.g.
normalization or orthogonality conditions of the type 7n[¥] =n

Here the method of undetermined Lagrange multipliers is useful
Instead of £[V] we vary

where )\ is the Lagrange multiplier
Variation

5L = 65 — \on

leads to a wave function that depends on Lagrange multiplier (this can
later be determined)
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Example: single mode

1
vV N!

and perform a variation with respect to the mode function
o) =l ol = [dPa st

with a constraint to ensure normalization of the mode

function () — (w|]w) - uN( [ " (@)é(x)d% ~ 1

* We choose T = ("N |vac)

with
H = / 4Pz ot () hyp () + 2 / 4P ()0 () () ()

2
e What do we obtain?

The GP equation! pop(x) = hig(x) + g(N — 1)|p(x)[*p(x)



Single configuration methods (self consistent field)

Hartree product

(distinguishable particles) U(xy, zo,...) = b1 (z1)da(22) - -

|dentical !—Iartree product 1 '(aT)N‘Va@ o B(a1)d(ws) - -
GP equation VN!

Permanent (symmetrised product)
Best mean field — Hartree Fock (Bosons)

()M (a})™? - - - [vac) <+ S{p1(z1)d1(z2) -}
Slater determinant: Hartree-Fock method (Fermions)

ciel - cl|vac) < A{¢1(z1)¢2(2) -+ }

Variation is performed wrt the orbital functions.
This leads to nonlinear (self-consistent) equation



What about an expansion in permanents?

* j.e.expand in an occupation number basis

W) =) Cil) 7) = N(a])™ (ah)™2 - Jvac)
J

* Variation with respect to coefficients:
— Leads to matrix eigenvalue equation

— This is known as “exact diagonalisation” or “full Cl (configuration
interaction)”

— Hard to do if you have large basis or many particles

* Variation with respect to orbitals and coefficients:
— This is known as multi-configurational SCF method
— Need a smaller set of orbitals (matrix dimension)
— One of the most accurate methods of Quantum Chemistry



Time-dependent variational principles
e Stationary action principle
to
55 =0 S:/ dt (U|H — ihd,| )
tq
* Dirac-Frenkel variational principle

(60|H — ihd,| W) = 0

 Mclachlan variational principle

|ihh — H||? = Min ="

It turns out, these are all equivalent if variation is performed

wrt complex parameters
(see Kucar, 1987, and Beck 2000, p113)



ldeology of variational qguantum dynamics

Variational derivation of GP function interprets the GP
order parameter as a single-particle or “mode” function
that describes the motion of a single-particle in a many
particle environment (involving lots of “elementary
modes” or “primitive basis functions”).

Systematic improvement upon GP is found by allowing
superpositions of permanents, i.e. correlation.

There is no notion of quantum or thermal “noise” in this
formulation. Finite temperature would have to be treated
by explicit ensemble averaging.

The actual many-body wave function (at the given level
of approximation) is available.



Multi-configurational time-dependent Hartree
for bosons (MCTDH-B)

e Start with a basis of permanents (i.e. symmetrised
products)

e Best written in second quantisation (occupation
number basis)
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MCTDH-B equations of motion

* Variation of the time-dependent coefficient vector
and mode/single-particle functions leads to coupled
equations of motion

M

I|¢j>=P h|¢>+ E {p t)}jk p/\sqlwsl|¢q>
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Example: Double well, levels of approximation

* Hierarchy of two-mode approximations:

1. 2 mode Gross-Pitaevskii (project GP onto two rigid
modes), gives classical pendulum equation

2. 2 mode Bose-Hubbard (or Lipkin-Meshkov-Glick),
full guantum model with 2 modes

3. 2 mode MCTDH-B: As in 2. but with variationally
optimised “modes” that can distort due to particle
interaction, can take into account some features of upper
excitation bands | S




Example: double well
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* MCTDH can be compared to a . | | |
two-site Bose-Hubbard (or f. |

Lipkin-Meshkov-Glick) model. 4| N\ |
* In LMG, the excited state

energies are (almost) linear IR
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Derivation of MCTDH-B

Use least action principle (or Dirac-Frenkel)

Use Lagrange multipliers (LM) to ensure orthogonality and
normalization of single-particle functions (spfs)

. M
SHCH}{d(r.0)}] =J’ d’{ (W‘]—A]— i%|q]> - 2 ,U-l\-j(.r)[<¢k|d)j> - (SI\J]} .
¢ k.j=1
Vary S with respect to spfs and coefficient vector.

Make use of ambiguity of representation (unitary
transformations in single-particle space) to simplify equations

<(b/\'|(.ﬁq> =0, kg=1,....M
Eliminate LMs in favour of projection operators

Resulting equations of motion conserve energy, normalization
and orthogonality of the single-particle functions



Why time dependence?

Wave function is represented by (large) vector. The
Hamiltonian is a (sparse) matrix. Time propagation is
based on matrix-vector multiplication O(n?).

Diagonalization of the matrix is O(n3) — more
expensive.

Ground and excited states can be calculated using
imaginary-time propagation (relaxation) and
combination of relaxation and diagonalization of
coefficient matrix.

It’s cool to study dynamics!



Quantum dynamics with 3 particles in 20 modes
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And with 90 particles in 2 modes
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What about strong interactions?

* Can we treat the physics of the Lieb-Liniger model
and Tonks-Girardeau gas with these methods?

 This is hard because the number of modes involved

becomes huge — truncation introduces significant
errors!

06— -
* Lieb-Linger exact  oss- e
solutions provide 0.5 .

an excellent bench- %43
mark.
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Rescaling

* Simple rescaling of the interaction strength can
greatly reduce the basis set truncation error in finite
calculations.

* This has been shown to be exact for 2 particles in a
ring geometry.

 Empirical evidence with up to five particles and in
harmonic and double well potentials (with MCTDH)
supports rescaling as a general method to reduce
errors.

Hallwood, Ernst, Brand (2010)
Ernst, Hallwood, Gulliksen, Meyer, Brand (2011)



Density of Tonks-Girardeau state in harmonic trap

Density of five particles in harmonic trap at TG limit (grey) and with
MCTDH (13 modes) at different interaction strengths.
The full line is the rescaled result.

Ernst, Hallwood, Gulliksen, Meyer, Brand (2011)



Flavours and history

« MCTDH (distinguishable particles) goes back to 1992 publication

— Big package, maintained by Hans-Dieter Meyer, distributed to all who ask,
mailing list, regular releases

— Mainly used for guantum molecular dynamics, i.e. chemical reactions,
molecular vibration and dissociation

— Forks and different version of code exist in many places in the world
— Used for cold atoms

 MCTDH-F
— Coded by 3 different groups

— Used for electron dynamics in strong fields; not yet applied to ultra-cold
atoms

* MCTDH-B

— Most efficient for boson problems

— Two implementations exist:

* Heidelberg: Streltsov, Alon, Cederbaum
* Auckland (QiwiB)



QiwiB (Quantum integrator with interacting bosons)

* Open source package to solve the MCTDH-B equations

e To study guantum dynamics of single-component Bose systems in one

dimension

e Extension to multi-component systems is under way

* Developed by Thomas Ernst with contributions from D.W. Hallwood, J.

Brand, J. Avery (extension)
* Easy toinstall under linux -s@-qiwib

joachim.brand@gmail.com v | My favorites ¥ | Profile | Sign out

Program package to solve the many-body dynamics of cold bosons Search projects

/ MacOsX, requires Octave o | o

Summary People

and open source libraries  sosumomse

J+1| Recommend this on Google

% Starred by 1 user

* Available at il

Code license
MIT License

code.google.com/p/qiwib e

Algorithm, Atom,
University

4% Members
giwibproject
3 committers

Your role
Committer

Featured

8 pownloads

qiwib_v11.10.03.tar.qz
Show all »

7 Wiki pages
About

Wiki Issues Source

The QiwiB program package

QiwiB is a program written in GNU Octave (an open source Matlab clone) to solve the many-particle
Schroedinger equation in one dimension. At the moment, it simulates the full quantum many-body
physics of ultracold bosons. For this, it uses the MCTDHB approach given in the following reference:
O. E. Alon, A. |. Streltsov, and L. S. Cederbaum, Phys. Rev. A 77, 033613 (2008) (link).

QiwiB is developed by members of the CTCP group at Massey University Auckland (link).

QiwiB is written in Octave and C++. Included in the QiwiB package is a comprehensive HTML manual.
See the Wiki pages for more information about QiwiB as well as installation instructions.

Packaged snapshots of the code, that are considered as stable, can be found in the "Downloads tab",
whereas the current development of QiwiB can be followed in the "Source" tab.

Because QiwiB is still in its early stages, we can not guarantee it to be completely bug free. If you
discover a bug please let us know by filing a bug report in the "Issues" tab.

News

« 03.10.2011: Another bug fix release

« 06.09.2011: Minor bug fixes

« 31.08.2011: Speed improvements and bug fix for the calculation of natural orbitals
« 30.08.2011: Important bug fix for QiwiB

¢ 25.08.2011: Inital release of QiwiB
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