Lecture 2: Metastable Helium BEC

Course Outline

LECTURE 1: Monday June 25th, 2.00 p.m. **ATOM OPTICS WITH METASTABLE HELIUM**

LECTURE 2: Monday June 25th, 3.30 p.m. **METASTABLE HELIUM BEC**

LECTURE 3: Tuesday June 26th, 2.00 p.m. **QUANTUM STATISTICS, COHERENCE AND CORRELATIONS**

LECTURE 4: Tuesday June 26th, 3.30 p.m. **COHERENCE AND CORRELATION EXPERIMENTS AT ANU**

Lecture 2 Outline

LECTURE 2: METASTABLE HELIUM BOSE-EINSTEIN CONDENSATES

Why He* BEC formation is hard

- Penning ionisation
- He*-He* Scattering Length

He* BEC experiments at other labs (now including Vienna)

- Orsay
- ENS
- Amsterdam

He* BEC experiments at the Australian National University

- Creating a BEC
- Creating an atom laser
- Stable and reproducible sources

Why is He* BEC hard?

PENNING IONISATION: 20eV + 20eV = 40eV > 25.6eV IP

- He* + He* -> He + He⁺ + e⁻ (Penning ionisation PI)
- $\text{He}^* + \text{He}^* \rightarrow \text{He}_2^+ + \text{e}^-$ (associative ionisation AI)
- PI loss rate ~ 10^{-10} cm³/s for unpolarised He* (5x10⁻⁹ with MOT light)
- Limits MOT densities to $\leq 5 \times 10^{-9} \text{ cm}^3 => \text{large MOT diameters} \sim 1 \text{ cm}$
- But angular momentum conservation helps for spin polarised He* in a *magnetic trap*, since it's the spin-dipole interaction that allows PI to occur

 $\text{He}^{*}(J=1) + \text{He}^{*}(J=1) \rightarrow \text{He}(J=0) + \text{He}^{+}(J=1/2) + e^{-}(J=1/2)$

• PI loss rate ~ 10^{-14} cm³/s for spin polarised He*, but creates enough ions so that it can be used as a free non-invasive density diagnostic

SCATTERING LENGTH

• Until someone tried to make a BEC, no one knew whether the scattering length was large enough to enable efficient evaporative cooling!

a - the Scattering Length

• "a" is determined by subtle quantum mechanical effects which depend sensitively on the interatomic potentials

• Knowledge of the behaviour of bound states - principally the binding energy of the least bound state or the relative light shift of different levels - can thus be used to determine "a"

• However, because of the extreme sensitivity of "a" to small changes in potentials, theory calculations require very accurate interatomic potentials

Why is a knowledge of "a" important ?

- Determines the scattering cross section ~ $8\pi a^2 => 1400 \text{ nm}^2 \text{ for He}^*$!
- Hence determines
 - the evaporative cooling rate (critically)
 - the critical temperature (less dramatically)
 - the condensed fraction (less dramatically)
- Also determines if ultracold atoms above T_c are in the collisional regime
 - Most alkalis are in the collisionless regime
 - He* can be prepared the collisional or hydrodynamic regime where

 λ_{mfp} < trap size (Leduc et al. 2002) and can be described as a two component fluid (condensed and uncondensed)

- If "a" is a significant fraction of the He* separation (few % c.f. 0.1% for alkalis), deviations from mean field theory may occur
- Determines the scattering length for ³He* ⁴He* by scaling

Determining "a" for He*

• From the total number of atoms N₀ in the BEC (ENS, Orsay, VU) $a = \sigma / 15N_0 x (2\mu /h\omega)^{5/2}$ $\sigma = (h/m\omega)^{1/2}$ is the size of the ground state of the trap ω = the mean trap frequency μ = the chemical potential derived from time-of-flight data

Requires careful measurement of N_0 (usually known to 50%)

• From the dependence of Penning ionisation rates as a function of the onset of condensation T_c (Orsay) derived from TOF

• From photoassociation spectroscopy (ENS) where (a) single-photon excitation determines "a" by the effect of light shifts (b) two-photon excitation measures the energy of the least bound state

• From inelastic collision rates (Orsay) where quantum effects play a role via the scattering length

FIG. 3. Fraction of remaining atoms measured by TOF as a function of time. The rf shield is on and the cloud remains a quasipure condensate during the decay. The lines correspond to the predicted atom decay according to Eq. (3) with the fitted value of the two- and three-body rate constants for a = 10 nm (dashed line), a = 20 nm (solid line), and a = 30 nm (dotted line). The case of a = 10 nm is not necessarily excluded because other, nonionizing losses could be present.

FIG. 1. Variation of the ion rate as the atomic cloud is cooled through the phase transition for various initial densities (gray curves). The rf-knife frequency at t = 0 is 2 MHz. The sudden increase of the ion rate (crosses) occurs at the BEC transition. The solid line passing through the transition points constitutes our empirical relation. named threshold curve.

FIG. 3. Ion rate versus critical temperature. The points correspond to the results of 280 runs for which the ion rate was deemed sufficiently close to the condensation threshold. Gray indicates runs for which χ^2 in the TOF fits was above 2. The dashed line is the theoretical estimate for a = 10 nm, the dotted line for a = 14 nm [both including interaction corrections of Eq. (4)]. The two solid lines correspond to a = 12 nm, (a) with interactions and (b) without interactions, and illustrate the size of their effect.

Photoassociation Spectroscopy

Energy

Two photon signals

-1436

∆', (MHz)

-1434

1432

-1438

-1430

3

-1440

(2) Spontaneous and/or stimulated decay back to a bound or free S+S state => *heating*

(3) Raman measurement of least bound state energy

Giant helium dimers

- Five bound states observed with single photon 1083nm excitation
- All have inner turning points ~ 150 a_o , with outer turning points up

J. Leonard et al., Phys. Rev. Lett. **91**, 073203 (2003)

⁴He* - ⁴He* Scattering Length

When ${}^{4}\text{He}{}^{*}a = 9.4\text{nm} \implies \text{infinite for } {}^{3}\text{He}{}^{*} - {}^{4}\text{He}{}^{*} : \implies 28.8 \pm 3.6\text{nm}$

He*: Pros

- ✓ Large stored energy 20eV
 - exposures for atom lithography
 EASY DETECTION single He*

 - ✓ de-excite: low background
- ✓ No nuclear spin for ${}^{4}\text{He}{}^{*}$
 - ✓ Simple energy structure
 - ✓ No repumping needed
- Big recoil velocity 9(26) cm/s ✓ Make good beamsplitters
- ✓ Low sat. int. 0.17 (3.3) mW/cm² ✓ Low power (diode) lasers
- \checkmark Large magnetic moment $2\mu_{\rm B}$ ✓ Easier magnetic control
- ✓ Large scattering length a = +7.512 nm ✓ Efficient evaporation \checkmark ³He* - ⁴He* a is larger ~ + 30 nm

He*: Cons

- ✓ Large stored energy 20eV
 - ✗ Penning ionization losses
 - ★ Low number densities
 - ✓ BUT drops by $>10^4$ in B field
- ✓ Nuclear spin for ${}^{3}\text{He}{}^{*}$
 - ★ 3 He* repumper needed
- ✓ Big recoil velocity 9(26) cm/s ★ High recoil temperature
- \checkmark Large magnetic moment $2\mu_{\rm B}$ **×** Susceptible to stray fields
- \checkmark Hard to make
 - ★ Low numbers
 - Complex apparatus X

Lecture 2 Outline

LECTURE 2: METASTABLE HELIUM BOSE-EINSTEIN CONDENSATES

Why He* BEC formation is hard

- Penning ionisation
- He*-He* Scattering Length

He* BEC experiments at other labs (now including Vienna)

- Orsay
- ENS
- Amsterdam

He* BEC experiments at the Australian National University

- Creating a BEC
- Creating an atom laser
- Stable and reproducible sources

World He* BEC experiments

Lab	Experiment / Detectors	BEC	Already investigated / Future Aims
Orsay	Chamber / MCP + PSD	2001	<i>a</i> value, T _c , Penning ionisation, HBT / Particle correlations, spectroscopy
ENS	Glass cell / Absorption	2001	<i>a</i> value, hydro regime, big mols 1- and 2-D lattices with MCP
VU	Chamber / MCP + Abs.	2005	<i>a</i> value, HBT Fermions / ⁴ He*- ³ He* Bose-Fermi Mixtures
ANU	2 Chambers / MCP+abs.+CEM	2005	Application of atom correlations, studies of EPR and quantum non-locality
Vienna	??	2011	Young's two slit - quantum non-locality

He* BEC Detection

Orsay He* BEC

Fig. 1. Schematic diagram of the apparatus (not to scale). The coils that form the magnetic trap are outside the vacuum in reentrant flanges. The microchannel plate is 5 cm below the center of the trap. The incoming He* beam propagates along the y axis (horizontally). The three pairs of magneto-optical trap laser beams (not shown) propagate along the z axis and at 45° to the x and y axes.

- BEC He* atoms ~ 10^6 at ~ 1μ K
- Magnetic trap lifetime ~ 35s With beamline shut $\sim 200s$

MCP signal 1.000 MHz 0.10 0.12 0.08Arrival time (s) TOF data for He* **BEC/thermal atoms**

1.050 MHz

1.020 MHz

1.012 MHz

arriving on the MCP

Robert et al., Science **292**, 461 (2001)

Orsay 3D atom detector

- He* atoms (m=0) fall with same velocity ~3 m/s onto
 80mm MCP, 12 μm c-c
- Electrons incident on 3 or 4 100µm c-c wires
- Excellent time (vertical) resolution ~ 1 ns (~1 nm)
- Delay-line anode gives in plane resolution (~ 500 μm) Roentdek/ISITech
- ~ 10^4 parallel detectors
- Cloverleaf trap in Amsterdam and Orsay

ENS He* BEC

Steven Moal, Jaewan Kim, Max Portier, Michele Leduc

Pereira dos Santos et al., Phys. Rev. Lett. 86, 3459 (2001)

CCD Camera

BEC ~ 7 x 10^6 atoms at ~ $1-5\mu$ K Magnetic trap lifetime ~ 30sBeam bender - shutter, no valve

VU Amsterdam He* BEC

Absorption Imaging laser

Movable (20mm) MCP ~ 17cm below BEC

VU BEC results

Lecture 2 Outline

LECTURE 2: METASTABLE HELIUM BOSE-EINSTEIN CONDENSATES

Why He* BEC formation is hard

- Penning ionisation
- He*-He* Scattering Length

He* BEC experiments at other labs (now including Vienna)

- Orsay
- ENS
- Amsterdam

He* BEC experiments at the Australian National University

- Creating a BEC
- Creating an atom laser
- Stable and reproducible sources

BEC Bright Beam System

Swansson et al.; Applied Physics B; Rev. Sci. Inst. 77, 046103 (2006)

2nd MOT and 1-D cooling

BiQIC Magnetic trap

Equivalent coil configurations

MOT, LVIS + BEC chamber

Temperature and Phase Space Density

BEC time-of-flight signals

• Start with ~ 1×10^8 He* in magnetic trap, and with T ~ 200μ K

• Finish evaporation with ~ 2 x 10^6 He* atoms at transition temp. T_c ~ 2 μ K

• At just $< T_c$ we have ~ 10⁶ He* in BEC

R.G. Dall and A.G. Truscott, Optics Comm. 270, 255 (2007)

BEC spatial images

RF output coupling Atom Laser

50 Hz magnetic field noise

Magnetic Field "Nuller" Schematic

C.J. Dedman, R.G. Dall, L.J. Byron, and A.G. Truscott, Reviews of Scientific Instruments in press (2007)

Nuller installation

AC Magnetic Noise at trap

DC magnetic noise

Atom Laser Noise

Without stabilisation

Rb vs. He*: out-coupling surfaces

Rb atoms experience a large sag - almost flat outcoupling surface

He* atoms experience little sag spherical shells

Fountain Effect

Atom Laser transverse profile

Simulated atom laser transverse spatial profiles

Atom Laser Profile

Dip in shadow of BEC

Twin peaked structure

First observation of fringes

High output-coupling fringes

Profiles for two radial frequencies

 $f_r = 460 \text{ Hz}$ $f_r = 113 \text{ Hz}$ rf = 10 kHzrf = 4 kHzrf = 6 kHz3.1 mm rf = 1 kHz10 mm rf = 3 kHzrf = 0.5 kHz

He* Atom Laser: Conclusions

- Measured spatial profile of a He* atom laser
- Observed predicted interference fringes for the first time

• Atom laser beam not ideal - highly multimode transverse spatial profile

ANU He* BEC experiment

Lecture 3: Tuesday June 26, 14.00 QUANTUM STATISTICS, COHERENCE AND CORRELATIONS

Les Houches-Chamonix, February 2005

Metastable Helium Properties

• He* is an important energy pool in astrophysical, atmospheric and plasma physics because of its

- long $2^{3}S_{1}$ lifetime ~ 8000s
 - spin flip and ΔL forbidden
 - Iongest lived metastable
- $\sim 20 \text{ eV}$ stored energy
 - easy to detect single atoms
 - MCP, EM, metal plate ~70%
- large ~ 100's nm^2 x-sections
 - Iong range potentials

• We excite He* atoms to the $2^{3}S_{1}$ metastable state in an electric discharge

- effectively a ground state atom
- Transitions at 1083 (389) nm
 - diode, fibre and frequency doubled lasers to cool and trap

PA Scattering Length

• "a" is determined by subtle quantum mechanical effects which depend sensitively on accurate interatomic potentials

• Knowledge of the behaviour of bound states can thus be used to determine the interatomic potentials, and hence "a"

• However, because of the extreme sensitivity of "a" to small changes in potentials, careful measurements are needed e.g. of light shift of v levels

MOT, LVIS + BEC chamber

Metastable Helium Properties

- We use He* atoms excited to the $2^{3}S_{1}$ metastable state
 - created in an electric discharge
- $2^{3}S_{1}$ lifetime ~ 8000s
 - Iongest lived metastable species
 - effectively a ground state atom
- Transitions at 1083 (389) nm
 diode (and other frequency doubled) lasers to cool and trap
- He* has ~20 eV stored energy
 easy to detect single atoms

Counting statistics

Atom Laser transverse profile

Measuring trap frequency

ANU He* Quantum-Atom Optics

Field attenuation at the sensor

BEC Procedure

- ~ 5 x 10⁸ He* atoms in MOT at ~ 1 mK
- Compress MOT by decreasing detuning
- Use 3-D molasses to give 200 μ K
- Transfer to weak magnetic trap (84 /75 Hz)
 ~ 1 x 10⁸ atoms at 1.3 mK
- 1-D Doppler cooling gives ~ $200 \ \mu K$
- Compress magnetic trap (560/95 Hz)
- Again, 1-D Doppler cooling gives ~ 200 μK
- Start evaporation with ~ 1×10^8 He* atoms