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LECTURE 2: METASTABLE HELIUM BOSE-EINSTEIN CONDENSATES

Why He* BEC formation is hard
* Penning ionisation
* He*-He* Scattering Length

He* BEC experiments at other labs (now including Vienna)
* Orsay
e ENS
* Amsterdam

He* BEC experiments at the Australian National University
* Creating a BEC
* Creating an atom laser
* Stable and reproducible sources



Why is He* BEC hard?

PENNING IONISATION: 20eV + 20eV =40eV > 25.6eV IP

e He* + He* -> He + He" + ¢ (Penning ionisation - PI)
« He* + He* -> He,” + ¢ (associative ionisation - Al)

 PIloss rate ~ 10-'Y cm?/s for unpolarised He* (5x10- with MOT light)
« Limits MOT densities to < 5 x 10 cm?=> large MOT diameters ~ Icm

* But angular momentum conservation helps for spin polarised He* in a
magnetic trap, since it’s the spin-dipole interaction that allows PI to occur

He* (J=1) + He* (J=1) —> He (J=0) + He' (J=1/2) + ¢ (J=1/2)

 PIloss rate ~ 10-'4 cm?/s for spin polarised He*, but creates enough ions
so that it can be used as a free non-invasive density diagnostic

SCATTERING LENGTH

 Until someone tried to make a BEC, no one knew whether the scattering
length was large enough to enable efficient evaporative cooling!



a - the Scattering Length

* “a” is determined by subtle quantum mechanical effects which depend
sensitively on the interatomic potentials

* Knowledge of the behaviour of bound states - principally the binding
energy of the least bound state or the relative light shift of different levels -
can thus be used to determine “a”

e However, because of the extreme sensitivity of “a” to small changes in
potentials, theory calculations require very accurate interatomic potentials

E




Why is a knowledge of “a” important ?

e Determines the scattering cross section ~ 8a’? => 1400 nm? for He* !

* Hence determines
 the evaporative cooling rate (critically)
e the critical temperature (less dramatically)
 the condensed fraction (less dramatically)

 Also determines if ultracold atoms above T, are in the collisional regime
e Most alkalis are in the collisionless regime
e He* can be prepared the collisional or hydrodynamic regime where
Mgy < trap size (Leduc et al. 2002) and can be described as a two
component fluid (condensed and uncondensed)

 If “a” is a significant fraction of the He* separation (few % c.f. 0.1% for
alkalis), deviations from mean field theory may occur

e Determines the scattering length for *He* - “He* by scaling



Determining “a” for He*

* From the total number of atoms N, in the BEC (ENS, Orsay, VU)
a=0/15N,x 2u /hw)>?
o = (h/mw)"?is the size of the ground state of the trap

w = the mean trap frequency
u= the chemical potential derived from time-of-flight data

Requires careful measurement of N, (usually known to 50%)

* From the dependence of Penning ionisation rates as a function of the
onset of condensation T, (Orsay) derived from TOF

* From photoassociation spectroscopy (ENS) where (a) single-photon
excitation determines “a” by the effect of light shifts (b) two-photon

excitation measures the energy of the least bound state

* From inelastic collision rates (Orsay) where quantum effects play a
role via the scattering length



Orsay He* Scattering Length “a’
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FIG. 1. Variation of the ion rate as the atomic cloud is cooled
through the phase transition for various initial densities (gray
curves). The rf-knife frequency at ¢+ =0 is 2 MHz. The sudden
increase of the ion rate (crosses) occurs at the BEC transition.
The solid line passing through the transition points constitutes
our empirical relation, named threshold curve.
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FIG. 3. Ion rate versus critical temperature. The points cor-
respond to the results of 280 runs for which the ion rate was
deemed sufficiently close to the condensation threshold. Gray
indicates runs for which »* in the TOF fits was above 2. The
dashed line is the theoretical estimate for a = 10 nm. the
dotted line for a = 14 nm [both including interaction correc-
tions of Eq. (4)]. The two solid lines correspond to a = 12 nm,
(@) with interactions and () without interactions. and illustrate
the size of their effect.
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FIG. 3. Fraction of remaining atoms measured by TOF as a
function of time. The rf shield is on and the cloud remains a
quasipure condensate during the decay. The lines correspond to
the predicted atom decay according to Eq. (3) with the fitted
value of the two- and three-body rate constants for a = 10 nm
(dashed line). a = 20 nm (solid line). and a = 30 nm (dotted
line). The case of a = 10 nm is not necessarily excluded
because other, nonionizing losses could be present.



Photoassociation Spectroscopy

Energy Two photon signals
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(1) Laser excitation of an unbound pair of atoms
to a bound state in a molecular potential we.
(2) Spontaneous and/or stimulated decay
back to a bound or free S+S state => heating T s

(3) Raman measurement of least bound state energy



Giant helium dimers

e Five boynd states observed with single photon 1083nm excitation
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J. Leonard et al., Phys. Rev. Lett. 91, 073203 (2003)



iHe* - 4He* Scattering Length
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observation of inelastic collisions [27], and from light-induced
frequency shifts in one-photon photoassociation [28].

When “He* a = 9. 4nm => infinite for *He* - *He*: => 28.8 + 3.6nm



He* : Pros

Large stored energy - 20eV

v’ exposures for atom lithography
v' EASY DETECTION - single He*
v’ de-excite: low background

No nuclear spin for “He*
v' Simple energy structure
v No repumping needed

Big recoil velocity 9 (26) cm/s
v Make good beamsplitters

Low sat. int. 0.17 (3.3) mW/cm?
v Low power (diode) lasers

Large magnetic moment 2ug
Easier magnetic control

Large scattering length a =+7.512 nm

v' Efficient evaporation
v’ 3He* - “He* a is larger ~ + 30 nm

He* : Cons

v’ Large stored energy 20eV
X Penning ionization losses

x  Low number densities
v BUT drops by >10* in B field

v Nuclear spin for *He*
x 3He* repumper needed

v' Big recoil velocity 9 (26) cm/s
X High recoil temperature

v' Large magnetic moment 2u;
X Susceptible to stray fields

v" Hard to make

X Low numbers
x  Complex apparatus
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World He* BEC experiments

Lab Experiment / BEC Already investigated /
Detectors Future Aims

Orsay Chamber / MCP + | 2001 a value, T, Penning ionisation, HBT /
PSD Particle correlations, spectroscopy

ENS Glass cell / 2001 a value, hydro regime, big mols
Absorption 1- and 2-D lattices with MCP

VU Chamber / 2005 a value, HBT Fermions /
MCP + Abs. “He*-3He* Bose-Fermi Mixtures

ANU 2 Chambers / 2005 Application of atom correlations, studies
MCP+abs.+CEM of EPR and quantum non-locality

Vienna 77 2011 Young’s two slit - quantum non-locality




He* BEC Detection

Channeltron
- ion counting (density probe)
- XUV detection

CCD camera
- spatial distribution

- density profiling/ T

Probe
laser

MCP or PSD
- He* spatial profiling
- time-of-flight T(K)




Orsay He* BEC

Atoms

1.050 MHz
M

1.012 MHz
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l . MCP Magnet_lc
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Fig. 1. Schematic diagram of the apparatus (not
to scale). The coils that form the magnetic trap
are cutside the vacuum in reentrant flanges. 1.000 Mz
The microchannel plate is 5 am belcw the
center of the trap. The incoming He' beam

MCP signal

propagates along the y axis (horizontally). The 0.08 0.10 0.12
three pairs of magneto-optical trap laserbeans et
(not shown) propagate along the z axis and at rrival ime (S)

45° to the x and y axes.

 BEC He* atoms ~ 10%at ~ 1uK TOF data for He*
e Magnetic trap lifetime ~ 35s BEC/thermal atoms
With beamline shut ~ 200s arriving on the MCP

Robert et al., Science 292, 461 (2001)



Orsay 3D atom detector

Clover leaf trap
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e He* atoms (m=0) fall with
same velocity ~3 m/s onto
80mm MCP, 12 um c¢-c

e Electrons incident on 3 or 4
100um c-c wires

e Excellent time (vertical)
resolution ~ 1 ns (~1 nm)

e Delay-line anode gives in
plane resolution (~ 500 um)
Roentdek/ISITech

e ~ 10% parallel detectors

e Cloverleaf trap in
Amsterdam and Orsay



ENS He* BEC

Probe laser

Glass Cell

ﬁ
Atomic

-

Magnetic trap
coils

Steven Moal, Jaecwan Kim, Max Portier, Michele Leduc CCD

Pereira dos Santos et al., Phys. Rev. Lett. 86, 3459 (2001)

BEC ~ 7 x 10%atoms at ~ 1-5uK
Magnetic trap lifetime ~ 30s |
Beam bender - shutter, no valve 0.2 ms

S ms




VU Amsterdam He* BEC
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VU BEC results

MCP signal (a.u.)

Na 0.017 seconde expansie
250
NP7 [
i 200 ¢ — 10.5 MHz
06 [
: [ 10 MHz
- [ 150 |
S0 — 9.9 MHz
E 04T 100 F — 9.8 MHz
= I [ —— 9.7 MHz
021 50 F — 9607 kHz
0.0 k& : : A ) h ) 180 190 200 210 220
00 02 04 06 08 1.0 12 time (ms)

transversaal (cm)

- 27 Jan 2005, 21:16

D
(e

Bose-Einstein

BEC ~ 8(2) x 10° atoms N
(now > 107 atoms)

Magnetic trap lifetime ~ 180s
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BEC Bright Beam System

Swansson et al.; Applied Physics B; Rev. Sci. Inst. 77, 046103 (2006)

LVIS ~ 2x 1019 He* /s
Vel. ~ 30 m/s
Trap ~ 109 He* / cm?

BEC
trap
He* Low Velocity chamber
atom Intense Source (UHV)
source 1 (LVIS)

L] B e
T

laser
Laser collimation Laser trap

|



2nd MOT and 1-D cooling

MOT
Beams

Load 5 x 103 He*
from LVIS into
second MOT
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BiQIC Magnetic tra
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MOT LVIS + BEC chamber




Temperature and Phase Space Density

Temperature ( K)
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BEC time-of-flight signals

T T T T
e Data
—— Thermal Profile
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e Start with ~ 1 x 10%
He* 1n magnetic trap,
and with T ~ 200 uK
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R.G. Dall and A.G. Truscott, Optics Comm. 270, 255 (2007)



BEC spatial images

MCP 2-D
detector

T>T,

T ~ 0.3T.



RF output coupling Atom Laser




50 Hz magnetic field noise




Magnetic Field “Nuller” Schematic
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feedback : .
cirenits — —  Helmholtz C0|Is_l Magnetlc flux gate
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C.J. Dedman, R.G. Dall, L.J. Byron, and A.G. Truscott,
Reviews of Scientific Instruments in press (2007)



Nuller installation




AC Magnetic Noise at trap
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Atom Laser Noise
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Rb vs. He*: out-coupling surfaces

Rb atoms 0

experience 20
a large sag
- almost
flat out-
coupling
surface —60]

He* atoms
experience
little sag -

spherical —40
shells

y [um]

0
-100 -50 0 50 100
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Fountain Effect
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Atom Laser transverse profile

0,= 07 pm o,= 96 um o0,= 572 um

100 pm
il
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Riou et al.
PRL (2006)
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Simulated atom laser transverse
spatial profiles

| Weak trap : : Low
09 50 Hz - ! i
(460 Hz - ( : i frequency
small sag) 0.8 large sag) .  (horizonta 1)
~ interference |

“

frequency - J




Atom Laser Profile

Dip 1n shadow of BEC

Twin peaked structure



First observation of fringes




High output-coupling fringes

ensity (Arb. Units)
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Profiles for two radial frequencies

f =460 Hz

rf=10 kHz

f =113 Hz

rf=4 kHz .

rf=6 kHz

rf=3 kHz

rf=0.5 kHz



He* Atom Laser: Conclusions

 Measured spatial profile of a He* atom laser

e Observed predicted interference fringes for
the first time

e Atom laser beam not i1deal - highly
multimode transverse spatial profile



ANU He* BEC experlment

. ""w"ﬁ:‘ &
/ - Robert Dal

Andrew Truscott
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Metastable Helium Properties

® He* is an important energy pool in
astrophysical, atmospheric and plasma
physics because of its
* long 23S, lifetime ~ 8000s
= spin flip and AL forbidden
= longest lived metastable

* ~ 20 eV stored energy

= casy to detect single atoms

= MCP, EM, metal plate ~70%
* large ~ 100’s nm? x-sections

" long range potentials

* We excite He* atoms to the 23S,
metastable state in an electric discharge
= effectively a ground state atom

® Transitions at 1083 (389) nm
= diode, fibre and frequency
doubled lasers to cool and trap

Energy

singlets

318,

218,

/

triplets
33D
| —= 33p
2
: —
588nm
23p laser
0 —
: 389nm
laser
1083nm
1
e - 2°S, metastable
/7
. /7 19.8 eV electron
excitation



PA Scattering Length

* “a” is determined by subtle quantum mechanical effects which depend
sensitively on accurate interatomic potentials

* Knowledge of the behaviour of bound states can thus be used to determine
the interatomic potentials, and hence “a”

» However, because of the extreme sensitivity of “a” to small changes in

potentials, careful measurements are needed e.g. of light shift of v levels
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MOT, LVIS + BEC chamber
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Metastable Helium Properties

* We use He* atoms excited to

the 23S, metastable state
= created in an electric discharge

e 23S, lifetime ~ 8000s
" Jongest lived metastable species
= effectively a ground state atom

e Transitions at 1083 (389) nm

= diode (and other frequency
doubled) lasers to cool and trap

e He™* has ~20 eV stored energy

= casy to detect single atoms

Energy

singlets

318,

218,

1S, ,

triplets
3°D
33P

W N -

0

1
588nm
laser

23P
0——

: 389nm

laser

1083nm
laser

p 23S, metastable

/

. 7 19.8 eV electron
excitation



.He cooled ANU He* BEC Lab
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Counting statistics
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Atom Laser transverse profile

Low

High



Atom Laser
Coherence

Above T,

[

0.D. (a.u)

I. Bloch, T. W. Hansch and T. Esslinger
Natufe 403, 166-170 (13 January 2000)

SN

Below T,

30

25+

20+

15+

10+

\H\

\r
HH
\U

H

'

|\

|/

\l' |

| H W‘

i

" ’l

\
| “ 'IM ‘

\‘ ‘

50

451

40 -

351

30+

251

20

151

10+

123

12.4

M\
‘\
\

1

‘\ U M‘

\’ )1

\v
s’ l W h
H \‘

i
\ \' \‘ ‘

u\\

I

M
| 1l

H\ \
\w
( \M‘\

\ !

u

\J | ' HH
‘w ” ‘\‘ M
H‘ ’ ‘[H ‘ ‘\\
u h ‘\\ H\‘

H‘{\\

H“‘

\ |

f

‘ \' \“

H‘

6]
12.05

L A
122 1225

12.4

12 45




Measuring trap frequency
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ANU He* Quantum-Atom Optics




Field attenuation at the sensor

Field attenuation at sensor (dB)
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BEC Procedure

~ 5 x 10% He* atoms in MOT at ~ 1 mK
Compress MOT by decreasing detuning
Use 3-D molasses to give 200 uK

Transfer to weak magnetic trap (84 /75 Hz)
~ 1 x 10% atoms at 1.3 mK

1-D Doppler cooling gives ~ 200 uK
Compress magnetic trap (560/95 Hz)
Again, 1-D Doppler cooling gives ~ 200 uK

Start evaporation with ~ 1 x 108 He* atoms



