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Lecture 3 Outline 

QUANTUM STATISTICS, COHERENCE 
AND CORRELATIONS: 
  

•  Coherence and correlations 
•  Hanbury Brown and Twiss experiments 
•  Correlation experiments elsewhere: 

o By quantum mechanics 
o By structure 
o By dissociation 
o By collisions 
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What correlates atoms? 

•  Quantum mechanics (with classical analogues)  
–  The distinguishability or indistinguishability of particles 

e.g. the Hanbury-Brown and Twiss Effect  
–  Applies to bosons and fermions 
–  Applies to photons, electrons, neutrons, protons etc. 

•  Interactions 
–  Structure e.g. optical lattices - Bloch (Mainz):  Rb atoms 
–  Molecular dissocation (the analogue of degenerate parametric 

down-conversion for photons) 
•  Jin (JILA) - K molecules  

–  Collisions (the analogue of optical four-wave-mixing) 
•  Spontaneous four-wave-mixing : Institut d’Optique (He*) 
•  Stimulated four-wave-mixing : ANU (He*) 
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Theory – Glauber (1963) 



Correlation Functions 

•  First Order Correlation Function g(1) 

•  Measures single particles 
•  => Amplitude fluctuations 

•  Gives fringe visibility in interference 
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2nd Order Correlations g(2) 
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•  Measures coincidence of particle pairs 
 => Intensity fluctuations 
 

•  Second order coherence  
– speckle and the Hanbury Brown-Twiss Effect  

 



2 
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Hanbury Brown/Twiss effect 

Lc = λ / 2πα 
τc = 1 / Δω

Varied the detector separation L to measure angular 
diameter (coherence area) of a star 
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Correlation length 
•  For light, correlation length is 

   Lc  = λ / 2π α   
    ~ L λ /2π s 

which is identified as the speckle size 
•  For de Broglie waves λdB = h/mv move from source for time t 

   Lc  = λdB / 2π α 

                   ~  t / ms 

 
 

L 

s 
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If detector resolution 
d << Lc => G(2)(0) = 2 
 
If detector resolution 
d >> Lc => G(2)(0) = 1  
 

α  



HBT interpretation 

g(2) > 1  =>  probability of finding two photons in the same 
 place greater than the product of the two single 
 photon probabilities   

            =>  photon bunching 

g(2) = 1  => independent particles 
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Bunching and Antibunching 

g(2)(τ):  the probability of measuring a particle 
at a time τ after the previous particle 

Chaotic bosons  
are bunched  
 

Coherent sources 
uncorrelated 
 

Chaotic fermions 
are antibunched 

1 < g(2)(τ) ≤ 2  

g(2)(τ) = 1  

0 ≤ g(2)(τ) < 1  

Image from h4p://atomop9c.iota.u‐psud.fr/research/helium/
pictures/bunch‐an9b‐en.pdf 
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td = detector deadtime 

τc = correlation time Τ = total data acquisition time 
tb = bin time 
ROI = region of interest = N x tb 

Temporal HBT  

Want:     td   <<  Δt   <  tb  <  τc   <  ROI  <<  T 

Δt = 1/mean count rate 

ROI ~ T 

tb ROI 
Τ

Τ

ROI << T 

Time between events 

Normalised 
probability 

2 

1 
τc 

sliding bin vernier 
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Classical Explanation 

Uncorrelated events from 
independent particles (shot 
noise) 

Correlated events due to beat notes 
between spectral components of  
emitters within coherence volume 
⇒  effective beat note wavelength  
        λb = c / ω’- ω” 

This is why the HBT measurement is not 
affected by atmospheric fluctuations whose 
path lengths L << λb 

In contrast, the Michelson interferometer 
measures g(1) and derives Lc from the fringe 
visibility, which is affected by atmospheric 
fluctuations L ~ λ.
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Quantum Interpretation 

Fano and Glauber: 

•  Two path interference: 
–  Path 1 amplitude <ab/cd> 
–  Path 2 amplitude <ad/cb> 

•  Indistinguishable paths - 
combined amplitude squared 

 ( <ab/cd> + <ad/cb> ) 2 

 
  

 Bosons + (symmetric) 
 Fermions - (antisymmetric) 

 

a c 

b d 

yields cross terms - 2! combinations 
 

Fermion g(2)(0) = 0 is purely quantum - no classical analogue! 

sources 

detectors 
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Atom correlation experiments 
•   Tokyo: Yasuda and Shimizu, PRL 77, 3090 (1996) 

–   first measurement of HBT effect in atoms (Ne*) showing coherent bunching 

•   Naraschewski and Glauber, PRA 59, 4595 (1997) - THEORY 
–   theory of 1st and 2nd order correlation functions for thermal and condensed gas mixtures 

•   Mainz: Folling, Bloch et al., Nature 434, 481 (2005) 
–   Correlations in the Mott insulator phase of a bosonic Rb optical lattice experiment 

•   JILA:  Greiner, Jin et al., PRL 94, 110401 (2005) 
–   demonstrated correlations between the dissociating atom pairs from a K molecular BEC 

•   Orsay:  Westbrook, Aspect - HBT in bosonic 4He*, Science 310, 648 (2005) 
–    also measured correlations in collisions between ultracold atomic clouds (ICAP) 

•   ETH:  Esslinger et al. PRL 95, 090404 (2005) 
-  g(2) for atom laser and pseudo-thermal beam 

•  Mainz: Bloch et al. Nature 444, 733 (2006) 
–   Correlations with fermionic Rb in Mott insulator phase 

•   Orsay & VU Amsterdam: Vassen et al., Nature 445, 402 (2007) 
–   used Orsay detector to measure HBT in fermions 3He* 
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Laser focus  
point source  

lens  

Curved mirror  
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HBT - Fermions and Bosons 

Top:  Bosons 
Bottom:  Fermions 
 
Lc 3He = 4/3 (Lc 4He) 

Light blue:  without lens  
Dark blue:  with demagnifying lens 
 
Similar to Shimizu’s experiment 
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•  Initially prepare Rb 
atoms in the Mott 
insulator regime - with 
exactly 1 atom in each 
lattice site 

•   Use absorption 
imaging to detect 
atoms at pixel 1 and 
pixel 2 

•   HBT says you can’t 
distinguish the paths  

•   Thus bosons 
interfere 
constructively 
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•  Displacement d gives conditional probability of finding two atoms in the same position 
•  Shows clear correlations at reciprocal lattice site positions in 2 D 

d 
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Molecule 

Atom 

Atom 
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Correlation by collisions 

•  He* atoms magnetically 
trapped in mf = 1 state 

•  Make transition to untrapped 
mf = 0 state - either Raman 
(Orsay) or RF (ANU)  

•  This causes collisions - 
equivalent to spontaneous 4 
wave mixing 

•  If the coupling is sufficiently 
strong or prolonged, 
stimulated 4WM occurs 

MCP detector 

m=1 

m=0 

σ+ 
π 

Spont. 
4WM 
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Raw data 

Scattered atoms BECs 

successive slices of atom 
distribution at the detector 

k=k 

k=-k 
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HBT 

correlated 
correlated 

Jaskula et al., 
PRL 105, 109402 
(2010) 



ANU 4WM correlations 

•   Scattering of He* in a 
pairwise process occurs 
when RF outcoupling 

•   Prove that these atom 
pairs are correlated – 
and perhaps entangled 

R.G. Dall et al., Phys. Rev. A 79, 011601 R (2009)  

26 VSSUP 2012 



The Future 

•  Correlations can be used as a diagnostic 
of the coherence of matter wave devices 

•  Applications might include squeezed 
atom interferometry, atom holography 

•  Correlations can lead to entanglement 
•  Studies of entanglement enable 

investigation of fundamental questions in 
quantum mechanics, such as the 
Einstein-Podolsky-Rosen paradox 
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Coherence and 
correlation  
experiments at 
ANU 

Baruntse 7129m -  Nepal, 1988 

Next lecture 


