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1. Non-locality and quantum mechanics
Einstein’s (EPR) spooky action at a distance 1935
Schrodinger’s cat 1935
Bell’s theorem 1965
- Bell and EPR experiments
GHZ’s extreme multiparticle quantum nonlocality
2. Introduce formalism of entanglement
Density operator — mixed states
Inseparability of density matrix
Pauli spin examples
Werner states
Peres PPT criterion and concurrence
Quadrature squeezing and spin squeezing
CV Variance and spin squeezing criteria for
entanglement
3. Applications
Quantum cryptography and quantum teleportation



So - Schrodinger’s Entangled States

A (pure) entangled state is one that cannot be
written in any factorised form i.e.

‘¢> > ‘l/j4>‘w5>



Entangled states: let’s look at them

Entangled states are non-separable: 2 classic examples

1 ZJA. -
- (-0 €5 — — €3

O(x, —x)0( 2, + Pp) — S —

B A

*Entangled states - greater correlation than separable states
for both conjugate (non-commuting) observables



Are entanglement and nonlocality equivalent?

NONLOCALITY requires entanglement

Interesting results for two qubit case

*All 2 qubit pure entangled states violate CHSH Bell inequality
(Gisin)

BUT there exist states (Werner) that are entangled
but are consistent with Local realism
le cannot violate a Bell inequality

Answer - no



So - Schrodinger’s Entangled States

A (pure) entangled state is one that cannot be
written in any factorised form i.e.

6) = |w,)|w,)

However, not all states are pure states!



Quantum entanglement:
First we revise some QM formalism

For any pure state | w>

the density operator is defined

p=ly)y



Need some formalism for density
operators p

Look at notes on line;

Recall: A density operator for a pure state |¢) is the operator |i)(y| —
here we use bra - ket notation.

So consider spin 1/2 system.

Question: Suppose the system is in |¢)) =

Answer: Express p in spinor basis |1

)
- (39)

Question: What is p for superposition? [¢) = %ﬂ MNa—11)a)

2,1/2) — what is p? :

=0
| 1), 80 pij = {ilpl7)

_\

Answer:

1 ( 1 —1)
P 2 -1 1 coherences

Note the off-diagonal elements associated with the superposition!



For the Bell state?

z| J, z
y y
x Source X
A

B b

Question: What is the p for the singlet state
1Y) = (I Dalbs —[al 1)) ? What is that basis?
Answer: take suitable basis

0 0 0 O @5
1 0 1 -1 0 o
P =2 0 -1 1 0
0 0 0 O




And for the mixture?

Question: What is the p for the singlet state
) = (I Nalds —Val D) ?

Answer: take suitable basis

0 O 0 O
o1 =10
P72 o -1 1 o0
0O O 0O O New question
What is p for the 50/50 mixture | 1) 4| })p and | [)a| T)B? f./
&5

To answer, we introduce the definition:

Definition: The density operator for a mixed state ie a state that is in a mixture
of pure states |¢yr) with probability Pgr is given as

p=)_ Prlvr)(¢r|
R




Need some formalism: mixed states
density operators p

Question: What is the density matrix for the 50/50 mixture of spin 1/2
| 1) and spin —1/2 | |) states?

p= SN+ HEI

1(1 0
P=35\ 0 1

@é Now answer our question
~__ercise: Now evaluate density operator and matrix for the 50/50 mixture

of | Nald)p and | |)a| 1)B7

Now evaluate matrix p for a spin 1/2 system in a 50/ 50 mixture of two
superpositions:

Answer:

1 1
E(I N+ 1), ﬁ(l = 11)

Exercise 7: Prove for all pure states, that p> = p. Hence show that for
pure state P = T'r(p?) = 1. For a mixture P < 1.



Definition: SEPARABLE Quantum

States
zt J,
y € — > y
10/4 » Source X [05
B %
f}, probability
d it t
P = EA’ ]EIOAIOB P density operator

A state is separable iff p can be written as
mixture of product states

Is H\>AN’>3 separable? %QTL‘DB—NLWB) ?



Definition of ENTANGLEMENT

2.3 Entanglement

We say two systems A and B are separable iff we can express the density operator
in the following factorisable form:

p=Y Prpaph
R

where p‘é and p2 are density operators for system A and B respectively. If this
cannot be done, we say the two systems are inseparable or entangled.

Exercise: Take the system 50/ 50 mixture of singlet and triplet superposi-

tions:
1

1
E(I DI =TI, —=ADH) + 0.

Is it entangled?



When do we lose entanglement?

z| J p
@ @/
X Source X

W) == (0.0, -1.11.)

Take the Bell state, and add “noise”
ie consider a mixture of the entangled state with a noisy unentangled state



Werner state entanglement

Exercise: Consider the “maximally unentangled state” for two spin 1/2
systems (two “qubits”). This is a system in a equal mixture of the composite
spin eigenstates.

What basis are
we using?

1
= -1
4

Pnoisy —

o= OO

0
0
0
1

S
OO O =
OO = O

Checkpoint: is this state
Indeed not entangled?

Consider the system in a mixture of this maximally unentangled state ppoisy
and the Bell singlet state:

P = PPsinglet + (1 — p)Pnoisy

Question: For what p is this state (called a Werner state) entangled?
(This is a fundamental question without an obvious immediate answer- see
Peres, Physical Review Letters, method of Positive Partial Transpose PPT)



Positive Partial Transpose PPT condition for entanglement

Exercise: Peres PPT criterion (PRL, 77, 1413 1996)
We write density matrix for Werner mixed state as

(1-p)/4 0 0 0

_ 0 (p+1)/4 —p/2 0

P= 0 -p/2  (p+1)/4 0
0 0 0 (1-p)/4

Then write the partial transpose wrt one system only

(1-p)/4 0 0 —p/2
B 0 (p+1)/4 0 0
P = 0 0 (p+1)/4 0
—p/2 0 0 (1-p)/4

Evaluate eignevalues of this new matrix.

If the system is separable (not entangled) then all eigenvalues will
be nonnegative. (Peres positive partial transpose condition-PPT).

All eigenvalues are nonnegative except one which is

A=—38p—1)/4

D o 4 Jey 0 Y 0™ ;1 1T 4 g



PPT condition necessary and sufficient for
entanglement for 2 x 2 systems

z
—
y y
Source X

A B I

For 2 qubit systems, PPT criterion is necessary and sufficient

For systems of dimension 2x2 (ie spin 1/2 by spin 1/2), the PPT crite-
rion is necessary and sufficient for entanglement - this was proved later by the
Horodecki’s (Physics Letter A223, 1, 1996; PRL78, 574 1997; 80,5239,1998).
Thus there is no advantage in using the method of Wootter’s concurrence which
also gives you a necessary and sufficient condition for entanglement but only for
2x2 systems.

Hence we have separability when p < 1/3 and entanglement when p > 1/3.

For higher dimensional systems, it is possible to have states with positive
partial transpose that are entangled- this is called BOUND entanglement.



BOUND entanglement cannot be “distilled”

&

€ —_—

Source X

O
£

“Distillation” means taking the “noisy” EPR entangled pairs, and

selecting a smaller number of better entangled pairs

USING only “local” operations and “classical communication” between Alice and Bob

Preparation
Fiber Squeezer A Beam A

Distillation

|-

. oo . X
Verification
PBS

BS 50/50

Fiber Squeezer B
Beam B

TS <D

-
L

L

BS‘ Signal

A2, ¢,
Alice

Bob
212, ¢, PBS

Birefringence  FiD@r Squeezer
comp - PI

& g
Tap A\
22,0,
PBS




Entanglement measures

How do we measure entanglement? Requirements?
Not made bigger by “local operations” or “classical communications”
Entanglement of a mixture can’t exceed sum of the entanglement of its parts (convexity)

Pure state: Entropy of entanglement
One measure of entanglement is the von Neumann entropy S,
of the reduced matrix pA=Trg|®><D|

£| D)D) = S, = 5, =-Trp’log p” = - Alogh,

where A, are eigenvalues of pA

Exercise: Take the Bell singlet |¢) = \/Li(l Mald)s—1|1)al T)B). What is
the reduced density matrix for Alice’s system? What is its E7

oA = S D+



Entanglement measures

Pure state: Entropy of entanglement

Alternatively, if we can write the state in the Schmidt basis as

N
w1'>A ® w1'>5

‘(I)> = ch

7=1

The measure of entanglement is

BN =5, =8, =-)

/

2

2log

C, C,

If c,=1, E=0, therefore there is no entanglement.

1
If ¢ = Jy e have the maximum entanglement

Exercise: Take the Bell singlet [) = \/L§(| MNald)B—1|4)al T)B). What is
the reduced density matrix for Alice’s system? What is its E7

1 The Bell state is
p? = 5[| SIEIENG maximally entangled!



Mixed state entanglement measures

Mixed states p = ), Pr|¢Yr)(¥r| are more difficult. One measure is the
Entanglement of formation:

Erp = min Y Pe E(|¢r)(¥rl)

For two qubit systems, this can be worked out, and expressed as the “con-
currence” - Wootters. For higher dimensions the question of an entanglement
measure is a difficult one.

Concurrence is powerful for two qubits....necessary and sufficient

ie will detect entanglement and separability

But these are small systems...

And we know already the Peres positive partial transpose PPT is useful

Technique ... to develop sufficient conditions for entanglement
based on uncertainty relations — EPR style ....squeezing



Separable Quantum States

z
z J p
y y
X Source X

A B
R? probability
p EA? RIZAT" 5 P density operator

*Separable states are mixtures of factorised states
“unentangled” states

Local density operators incorporate uncertainty principle
: local fuzziness

* Reduces correlations between A and B - can’t get EPR



EPR entanglement and squeezing

Entangled states are non-separable: 2 classic examples

z JA

1 |
- (th-1) €5 — — €3

X-X; =P X, p

O(x, —x,)0(p, +pz) > g

B A

*Entangled states - greater correlation than separable states
for both conjugate (non-commuting) observables

Variances of SUMS OF MOMENTA and DIFFERENCES
OF POSITION are zero ie they are squeezed

*How to detect such "EPR” entanglement?.....use squeezing!



Detecting entanglement using squeezing:
local uncertainty relations (LUR)

Local Uncertainty Relation Criterion 1:
Assume separability, that the system can be described as a mixture of fac-
torizable states, so that

p= Z Prp&pp...
R

where Ppg is a probability (3., Pr = 1) and p4% is a quantum density operator
for a state at site A, and pg one for site B, etc. We follow approach of Duan et
al (Physical Review Letters (PRL), 2000) and Hofman and Takeuchi (see below
for reference) to derive criteria following from this assumption, that are then
criteria sufficient (but not necessary) to demonstrate entanglement.

Assuming separability, we can write that the variance of a mixture must not
be less than the average of the variances of its components. So if separability
holds (no entanglement), we must have

@;ﬁ Actually, that result depends only the p
s being a mixture



Detecting entanglement using squeezing:
local uncertainty relations (LUR)

A*(X 4 — XB)+ A%(P4y + Pp)

Use separability here,
| because we factorise
N the A and B moments

There will be a
cancelation of those terms here

\\.

(s

)
3

\

A%

Y Pr(A%(Xa — Xp) + A%(Pa + Pg))
i Pr[(X4)r + (XB)r — 2(X4)r(XB)R]
+RZ Pr[(P{)r + (P5)R + 2(Pa)r(PB)R]
—ZPR (X4 — XB)% ZPR (P4 + Pg)%

Now, each R is a quantum state
This means the uncertainty principle holds for each state R at Aand B



Detecting entanglement using squeezing:
local uncertainty relations (LUR)

Now for a quantum state, the following uncertainty relation follows from
AXAP > 1. So the “local uncertainty relation” is

A%X + A%P > 2 (j

At least this amount of noise!

A*(X4 — XB)+ A%(Py+ Pg) >4

)
\\D\

which gives

A?(Xa— XB)+ A%(Ps + Pg) < 4

as a sufficient criterion for entanglement (note the different forms that appear
in the literature depending on the choice of normalisation of the definition of X
and P).

Note that quantum mechanics allows the Left hand side to be zero, because
the commutator of X4 — X5 and P4 + Pg is zero!



But how do we generate and measure
such entanglement?

Remember: lecture 2

How is this squeezing measured?
Combine with large coherent field (laser) using a beam splitter
(50/50 mirror) to get a measure of this fluctuation eg

Qout,+ — [a—i— + a—]/\/é
Qout,— = [_a'-i— + a’-]/\/§

but if a, is very large, it can be classical amplitude Ee~*- then the photon
number difference between the two arms of the beam splitter is

azut,+aout,+ — a1n+am,+ = E(aiew + a_e~%)... this becomes X or P de-
pending on the choice of phase 6.

Need to identify the “quantum limit”: defined as that for a coherent state,
best to take vacuum |0): so measure noise levels with a_ a vacuum, then com-
pare with noise levels when a_ is the squeezed light source.



Measurement of the quadratures X,P

' Remember: lecture 2

/

Strong laser field E a,:
N

LO local oscillator
X I

e I Phase difference that selects X or P

Beam splitter

e, BS
squeezed

field a_
Photon number difference

measurement - corresponds
to EX,

o

\ homodyne x /
~ -

Question: what if the second input port a. has a vacuum state |0> input? S€€ notes on this
How does variance of number difference vary with 6?



EPR entanglement generated from
twin photon sources

Recall lecture 2 1BEr 25 PHYSICAL REVIEW LETTERS 22 Ju

Realization of the Einstein-Podolsky-Rosen Paradox for Continuous Variables

Z.Y.Ou, S. F. Pereira, H. J. Kimble, and K. C. Peng®

Vorman Bridge Laboratory of Physics 12-33, California Institute of Technology, Pasadena, California 91125
(Received 20 February 1992)

. @) : : :
Signal X . ;
—— g
o — Q
Idler b (X5, Ys)

Eisa

pump field H = KE(a+b+ + ab)

EPR correlated quadrature amplitudes generated

using a two-mode OPO Hamiltonian
XA correlated with XB Note: they use

Y P
PA anticorrelated with PB to mean




EPR entanglement using squeezing

(b) M; KTP M, Pump H _ KE(d+b+ +Clb)

-------------------------------------

¥,(Q,8,) (2, 6,)
(22, 6,,0,)

FIG. 1. (a) Scheme for realization of the EPR paradox by
nondegenerate parametric amplification, with the optical ampli-
tudes (X;,Y;) inferred in turn from (X;,Y;). (b) Principal com-
ponents of the experiment.



EPR entanglement using squeezing

Noise for sum of XA- X8 AND P*+ PB
reduced below the quantum limit of 4

A (X' = XY+ N (P! + PP < 4

' "\
C o ——a#enlum noise level = 4
8 (a)
5-1
£l
2.5 < A A7) |
E B AT Mﬂ\l\‘\\/“l\»y\!'\'\'\"‘wvvhwﬁJW'\/WMNVJ‘LN\’HV\ 2 ( P/4 + PB )
_4 1 1 1 | 1 1 1
3 4 5 6 7 8 9 10
Frequency (MHz)

Confirms entanglement between A and B



EPR entanglement atomic homodyne

LETTER

Atomic homodyne detection of continuous-variable
entangled twin-atom states

C. Gross', H. Strobel', E. Nicklas', T. Zibold', N. Bar-Gill*t, G. Kurizki’ & M. K. Oberthaler’

doi:10.1038/nature10654

H=xE(a"b" +ab)

a
Photons —— Atoms —
N e \@A Figure 1 | Analogy to optics and measured population correlations of twin-
I\l I " ‘i I.‘ ™ _. ,',: — atom states. a, Parametric down-conversion with light, and the analogy to
Il | - / \Bod/ \@/ atomic spin-changing collisions. In a nonlinear medium, effective interactions
A ' |88s%.. NS (top) result in the creation of photon pairs in the signal (red) and idler (blue)

modes from pump mode photons (green). The quadratures of the output
modes (bottom) are centred around the origin—the individual ones are

Y Y.

Y T Y isotropic, while the two-mode quadratures are squeezed reflecting their
correlations (purple). See text for nomenclature. Pair creation due to spin-
changing collisions in tight traps is an analogous process in quantum atom

XJ, XT X optics.

A (X = XY+ N (P + PP)< 4



EPR entanglement atomic homodyne

LETTER

Atomic homodyne detection of continuous-variable
entangled twin-atom states

C. Gross', H. Strobel’, E. Nicklas', T. Zibold', N. Bar-Gill*+, G. Kurizki’ & M. K. Oberthaler"
AN (X - XY+ AN (P +P)< 4

c 100
80} 14 0o o

doi:10.1038/nature106 54

60 6

AZXU0(p,)
o
0

40f 27 ?
20t o} 1

8 \ Nearly there
) T T . Y )




Atoms? Entanglement using spin
squeezing

We apply same proof, but apply to spin observables
and a spin uncertainty relation

Spin criterion 1:
Another uncertainty relation for fixed spin j is (Hofman and Takeuchi, Phys-
ical Review A,68, 032103 (2003))

(ATZ)? + (ATy)* + (ATF)* >

and from ths we can derive criteria for entanglement (Hofman and Takeuchi,
PRA,68, 032103 (2003)). Consider two systems A and B: Define collective spin
observables

Jy=J2 £ JB

If we have a separable state (no entanglement), then p =Y » PrpapE.



Entanglement using spin squeezing

Now, because the variance of a mixture can never be less than the average
variance of its components, and then because for a factorised state pﬁpg,

AJE£T7) = ((JF£T7)%) —((JF £ T7))*
(ATZ)? + (ATF)?

and after using the Local Uncertainty Relation (LUR) we find that separability
implies

(AJ2)? 4+ (A% + (A > Y Pr{(AL):+ (AJy)% + (A.)%
R
= Y Pr{(AJHR+ (ATHR + (ATH%
R

+H{(ATD) % + (AID)% + (ATD)%

> 2]
Thus, if @;
(AT,)? + (AJ,)? + (AJ,)? < 25 bl

then the two systems A and B are entangled. T g



Uncertainty relation for two spins C,;

A second uncertainty relation exists for just two spins
We can use this relation to derive an entanglement criterion
Involving the spin measurements X and Z

(A} +(A2=C,
(A7) +(AS3) 2 C, % o3
For j=1/2 o 20 4o;pin_Jéo T80 100
(AJ,) +(AJ,)=1)2

Or if Pauli spi
ritwe use Fauli spins Thus, two systems are entangled

(AU/r)z + (Agzyz o if these inequalities are violated



Entanglement using spin squeezing

Exercise: consider the Bell singlet state

%n Nal D5 — | 1al Dl

Will this criterion pick up the entanglement of the Bell state? what is the
sum of the variances? Remember the Bohm EPR paradox, for which spins were
correlated.

Answer: recall your answer to exercise 1... the EPR paradox. The spins
are perfectly correlated in all directions, so the sum of the variances (with ap-
propriate choice of a “sum” or “difference” depending on whether there is the
correlation or anticorrelation) is 0.

Exercise: Does this criterion pick up the entanglement of the Werner state
mixture? (see article in PRA by Hofman and Takeuchi).

%) =

)
R

See answer in notes on line (

\\



Entanglement using spin squeezing: more!

Az Ady 2 [(J2)]/2

One can use the product uncertainty relation in a similar way: entanglement
is detected if (Giovannetti et al. PRAG67, 022320 (2003)).

(ATa)(ATy) < [T+ [(T2))/2

ALSO a criterion sufficient for entanglement is
A3 F J7) + AT £ 7)) < [T+ (7))

So! There are many different LUR criteria for entanglement,
using different observables and different uncertainty relations.

These different criteria are useful in different situations



Spin squeezing: useful for detecting
entanglement with atoms

Spin squeezing;:

Define spins Jy, Jy, J;:
ATz ATy > [(J2)|/2

Spin squeezing when AJ, < 1/|(J,)|/2. Spin squeezing has been measured
using optical Schwinger spin (polarisation modes) and more recently for cold

atoms. Often, the convention is to take (AJ,)? < |(Jz)|/2, and Jz is measured

as the Schwinger number difference: J, = (alal — a%ag) /2, so squeezing shows
as a reduced number difference fluctuation (ie is phase insensitive).

J, N
T p §(cos o) \ ! 100

]
Counts
2

% S.7 um )

An

: 0
/
J VN

I
y



Some spin squeezing formalism

Two-level atom/ spin formalism

one level of an atom is denoted |1), the second level |2)

define spin operators according to:

o = [0)(1], T = [1){0], o, = (|1){1] — [0){0[)/2

If we have a large number N of such atoms: (levels); or two polarisation
modes = that can be occupied by large number of photons, or two levels that
can be occupied by a large number of particles then it extremely useful to

define Schwinger spins (check commutation relations using boson relations:
([aT,a] = 1))...use this to check my relations!)

J. = (ala1 —ala)/2
J, = (alag+alai)/2
J, = (alag—ala;)/2i

SO eg aIal is the number of particles occupying level (or “state”) 1; and

similarly agaz is number occupying level 2. Thus J, gives “number difference”

between two levels. If we have a fixed number N of particles, then a{al + agaz

is conserved as the total number N, which means j = N/2 is the “spin” of the
system.



Spin squeezing: will be useful for
detecting entanglement with atoms

See notes on line for how the spin squeezed

Spin squeezing:
p q 8 states can be generated

Define spins Jy, Jy, J;:
ATz ATy > [(J2)|/2

Spin squeezing when AJ, < 1/|(J,)|/2. Spin squeezing has been measured
using optical Schwinger spin (polarisation modes) and more recently for cold

atoms. Often, the convention is to take (AJ,)? < |(Jz)|/2, and Jz is measured

as the Schwinger number difference: J, = (aJ{al — agag) /2, so squeezing shows
as a reduced number difference fluctuation (ie is phase insensitive).

J, N
T p §<C°S o) \ ! 100

Counts
(6)]
o

% S.7 um )

An



Entangled atoms: spin squeezing criterion

© @ ©
O
@ ¢ © °

)

N identical spin 7z systems (atoms) denoted by i
*Define and measure collective spins Jy,Jy,J-.

N .
J, =2,

(not able to test EPR/ nonlocality)

*Each system satisfies Local Uncertainty Relation
ATLAT, = (73 )12

*What if the atoms are not entangled?



Entangled atoms: spin squeezing criterion

© @ O

O QQ o © I, =27 AL ATy = (73 )12

i=1

O

If there is no entanglement, we can write the density operator
as a mixture of product states

This will constrain the statistics of the system

(1) First we note that for a single spin j system (finite dimensionality),
there is a constraint on how large the variance in spin can get!

AN,<; = NJ,<1/4 wheae j=1/2



Entangled atoms: spin squeezing criterion

® @ o )
Q i
O ® O O J, =.EJZ
O

Assuming NO entanglement, we write

Now consider the variance in the collective spin.
(2) We use convexity and separability to get the first step (compare with previous proof)

N N
NT, 2 3 P (M) 2 ) Py D (ML),
R i=1 R i=1

(3) What is the minimum variance for any single spin system?

Use ALATL =(J3)2 we find @%
-

e =N =)

AT, 2‘<J§>

where j=1/2

Applies to any R



Entangled atoms: spin squeezing criterion

o @ o
®

@ o ©°
@)
Now use Cauchy Schwarz inequality

Lo, 5o, y
AZJZZEPRE(AzRJ;)ZEPRE(AZRJZZ)min ki
R i=1 R i=1 .

N

; 2
= ;PR 21 <J X> The Cauchy Schwarz applications are
. nontrivial - see extra notes on line

2
=\(J, )| IN
Violation of this “spin squeezing inequality” indicate entanglement!
If we observe a collective spin squeezing good enough so  A*./, < KJZ>‘2 v.4

Then we have entanglement (between at least 2 systems)



But how many atoms entangled?

© _ a-P
o
e q ©® ©
.

0.5

P = 2101?/31 °°°°° Py 0.4

=
=
Var(J)/J

0 0.2 04 0.6 0.8 1

. . . (I,
As J increases, we can get better spin squeezing ¢

thus, the amount of spin squeezing gives information about the minimum value of |
Which gives information about the minimum number of atoms are entangled



Entangled atoms: spin squeezing criterion

O o @ ©
© ¢ ©° (A)* <|(J, ) IN
O

12p

~100 atoms
entangled

(=]

Number squeezing, &2 (dB)
o

-6F ~z

80
—_—

‘ 0 —170
095 (cosg) 1
_12 " i 1 1 i 1 1 it 1
0 90 180 270 360

Rotation angle, a (°)



Genuine multipartite entanglement/ nonlocality

(O Are 2 or 3 particles
S O} @ really entangled?

W), - (i)-jooo))  How to detect it?

= —(100)+|010) +|001))

Svetlichny asked same questions of nonlocality 1987



Svetlichny’s Bell inequality

PHYSICAL REVIEW D VOLUME 35, NUMBER 10 15 MAY 1987

Distinguishing three-body from two-body nonseparability by a Bell-type inequality

George Svetlichny
Departamento de Matematica, Pontificia Universidade Catolica, Rio de Janeiro, Rio de Janeiro, Brazil
(Received 24 April 1986)

We derive an inequality, violated by quantum mechanics, that in a three-body system can detect
three-body correlations that cannot be reduced to mixtures of two-body ones related locally to the
third body.

Physicists generally agree that quantum mechanics the approximations or the phenomenological input that

gives accurate and at times remarkably accurate numeri- must be used in the theoretical treatment. Nuclear, con-
cal predictions. The existing body of experimental evi- densed matter, and the bulk of elementary-partice physics
dence, however, is not qualitatively diverse enough to war- fall into this category.

Abbreviating E (A, B;Cy) to E(ijk) our inequalities that follow from the limited entanglement hypothesis are thus
[IE(NID4+E(112)4+EQI1)—E212)4+E(121)-E(122)-E(221)—-E(222)| <4,
[E(IID4+E(112)-EQIN—E(212)-E(121)—E(122)-E(221)4+ E(222)| <4.

(5)
(6)



But how many sites/ particles are genuinely

entangled?
O A :
P @‘ @ B Verifying genuine tripartite
& e & O entanglement:
. C need to measure entanglement but

exclude that 2 party entanglement
can completely describe the statistics

To prove bipartite entanglement AB, we exclude

p=) PP
Ve



Criteria for multipartite entanglement? partial

factorisation
O Aa .
P @' @ B Verifying genuine tripartite
& e & O entanglement:
.. C need to exclude that 2 party
© entanglement can describe the
statistics

To prove tripartite entanglement, we need to exclude all three forms for p
Allowing for 2 party entanglement

_ R R
P = E&p‘f’pﬁc > 4 B and C can be entangled
p=Y Pl Pt p =D FePsPlc

Verifying genuine tripartite Bell nonlocality: need to exclude all 2 body nonlocality



Quantum cryptography

Cryptography |

Public classical authenticated channel X
- )

N
Quantum channe’D

Source prepared in a Bell state

Alice and Bob use correlated bits (up/ down)
state for a quantum key Ekert

They randomly switch the choice of spin
measurement .... decision made locally after
particles are in flight (6, 6°, X,y;$,0’,X,y)

Get together later, check measurement angles
(only)- where same, the result will be 3 L
opposite....share a secret key (bit values) QKD ‘lp> - ﬁ q ! \|/> B ‘ | 1\>)

Security? —check results for violation of Bell

inequality.....If Eve has eavesdropped, there will be
no violation of Bell inequality




Quantum teleportation

Transferring a quantum state to a different location
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Problems with teleportation
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* Alice wants to send a quantum state to Bob

y.)=alh)+Bl)

« She cannot measure the state and then send the
results (“measure and preparation”)

* |If she sends the state itself, it might deteriorate
on the way or take too long



Four Bell States

« 4 Bell states (the maximally nonlocal and entangled

states)
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 Form a basis for all 2 qubit systems



Teleportation protocol

Alice has a qubit ‘l/JC> that she wants to teleport
Alice and Bob share a two qubit entangled Bell
state, let's say ‘qﬁ; B>

She performs a Bell measurement on her local
states AC, and sends Bob the result.

Bob performs a transformation of his qubit B,

according to Alice’s Bell measurement result
and qubit B becomes a replica ‘I/Jc> of qubit C



Quantum teleportation

Local Bell measurement
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Calculate?

 Before Alice’s “Bell measurement” the state is
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* which can be re-expressed in Alice’s Bell state

basis as
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» Alice’s local “Bell measurement” gives the
result indicating one of the Bell states



Calculate?
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= By performing a Bell measurement on AC state
Alice knows that Bob’s system “collapses” (is
REDUCED) into one of the above states

* EG if she measures| ¢, ) what is Bob's state?
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Calculate?

* By sending the result classically to Bob, Alice
instructs Bob which transformation to perform on
his state — to get his qubit in the form of

) =alf)+Bl)

* Bob operates locally using Pauli matrices — which
Pauli matrix does he use if he gets the signal for
the Bell state |¢,.) ? (use 0)
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Outline

1. Non-locality and quantum mechanics
Einstein’s (EPR) spooky action at a distance 1935
Schrodinger’s cat 1935
Bell’s theorem 1965
- Bell and EPR experiments
GHZ’s extreme multiparticle quantum nonlocality
2. Introduce formalism of entanglement
Density operator — mixed states
Inseparability of density matrix
Pauli spin examples
Werner states
Peres PPT criterion and concurrence
Quadrature squeezing and spin squeezing
CV Variance and spin squeezing criteria for
entanglement
3. Applications
Quantum cryptography and quantum teleportation



