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Outline 
1.  Non-locality and quantum mechanics 
                     Einstein’s (EPR) spooky action at a distance 1935 
                     Schrodinger’s cat 1935 
                     Bell’s theorem 1965 

   - Bell and EPR experiments 
                     GHZ’s extreme multiparticle quantum nonlocality 
2.   Introduce formalism of entanglement 
                      Density operator – mixed states 
                      Inseparability of density matrix 
                      Pauli spin examples 
                      Werner states 
                      Peres PPT criterion and concurrence 
                      Quadrature squeezing and spin squeezing  

          CV Variance and spin squeezing criteria for  
  entanglement 

3.  Applications  
                      Quantum cryptography and quantum teleportation 

4.    Applications- 



A (pure) entangled state is one that cannot be  
written in any  factorised form i.e. 



Entangled states are non-separable: 2 classic examples 

• Entangled states - greater correlation than separable states  
                   for both conjugate (non-commuting) observables 



Are entanglement and nonlocality equivalent?  

• All 2 qubit pure entangled states violate CHSH Bell inequality 
(Gisin) 

• BUT there exist states (Werner) that are entangled 
           but are consistent with Local realism 
            ie cannot violate a Bell inequality 
• Answer - no 

Interesting results for two qubit case 

NONLOCALITY requires entanglement 



A (pure) entangled state is one that cannot be  
written in any  factorised form i.e. 

However, not all states are pure states! 



For any pure state       

the density operator is defined 



Need some formalism for density 
operators ! 

Look at notes on line:  

coherences 



For the Bell state?  

What is that basis? 



And for the mixture?  

To answer, we introduce the definition:  

New question  



Need some formalism: mixed states 
density operators ! 

Now answer our question 



A state is separable iff ! can be written as  
mixture of product states 

         probability 

        density operator 

Is                         separable? ? 





When do we lose entanglement?  

Take the Bell state, and add “noise” 
ie consider a mixture of the entangled state with a noisy unentangled state 



Werner state entanglement 

What basis are  
we using? 

Checkpoint: is this state  
Indeed not entangled? 



Positive Partial Transpose PPT condition for entanglement 



PPT condition necessary and sufficient for 
entanglement for 2 x 2 systems 

For 2 qubit systems, PPT criterion is necessary and sufficient 



BOUND entanglement cannot be “distilled” 

“Distillation” means taking the “noisy” EPR entangled pairs, and  
selecting a smaller number of better entangled pairs 

USING only “local” operations and “classical communication” between Alice and Bob   



Entanglement measures 
How do we measure entanglement? Requirements?  

Not made bigger by “local operations” or “classical communications” 
Entanglement of a mixture can’t exceed sum of the entanglement of its parts (convexity) 

Pure state: Entropy of entanglement 
               One measure of entanglement is the von Neumann entropy SA   

  of the reduced matrix !"=TrB|#><#| 

where $i are eigenvalues of !" 



Entanglement measures 
Pure state: Entropy of entanglement 

               Alternatively, if we can write the state in the Schmidt basis as 

The measure of entanglement is 

If c1=1, E=0 , therefore there is no entanglement. 

If                    we have the maximum entanglement 

The Bell state is  
maximally entangled! 



Mixed state entanglement measures 

Concurrence is powerful for two qubits….necessary and sufficient 
ie will detect entanglement and separability 
But these are small systems…  
And we know already the Peres positive partial transpose PPT is useful 

Technique … to develop sufficient conditions for entanglement 
 based on uncertainty relations – EPR style ….squeezing 

PR 



Separable Quantum States 

• Separable states are mixtures of factorised states 
   “unentangled” states 

• Local density operators incorporate uncertainty principle  
                               local fuzziness 

•  Reduces correlations between A  and B - can’t get EPR 

        probability 

       density operator 



EPR entanglement and squeezing 
Entangled states are non-separable: 2 classic examples 



Detecting entanglement using squeezing: 
local uncertainty relations (LUR) 

Actually, that result depends only the !  
being a mixture 



Detecting entanglement using squeezing: 
local uncertainty relations (LUR) 

Use separability here,  
because we factorise 
the A and B moments 

There will be a  
cancelation of those terms here 

Now, each R is a quantum state 
This means the uncertainty principle holds for each state R at A and B 



Detecting entanglement using squeezing: 
local uncertainty relations (LUR) 

ie Separability implies  
At least this amount of noise! 



But how do we generate and  measure 
such entanglement? 

Remember: lecture 2 



Measurement of the quadratures X,P 

Photon number difference 
measurement - corresponds 

to EX% &

Beam splitter 

Strong laser field E a+: 
 local oscillator 

Input 
squeezed 

field a- 

Phase difference that selects  X  or P 

See notes on this Question: what if the second input port a-  has a vacuum state |0> input? 
How does variance of number difference vary with %?&

Remember: lecture 2 



EPR entanglement generated from 
twin photon sources  

! 

H ="E(a+b+ + ab)

a 

b 

EPR correlated quadrature amplitudes generated  
using a two-mode OPO Hamiltonian 

XA correlated with XB 

PA anticorrelated with PB 

Note: they use 
 Y to mean P 

Recall lecture 2 

E is a  
pump field 



EPR entanglement using squeezing 

XA  or PA XB or -PB 

%& '&
! 

H ="E(a+b+ + ab)



EPR entanglement using squeezing 

Confirms entanglement between A and B 



EPR entanglement atomic homodyne 

! 

H ="E(a+b+ + ab)



EPR entanglement atomic homodyne 

Nearly there 



Atoms? Entanglement using spin 
squeezing 

We apply same proof, but apply to spin observables 
 and a spin uncertainty relation 



Entanglement using spin squeezing 

Can’t always measure three spins 



Uncertainty relation for two spins CJ 

A second uncertainty relation exists for just two spins 
We can use this relation to derive an entanglement criterion 

Involving the spin measurements X and Z 

For j=1/2 

Thus, two systems are entangled  
if these inequalities are violated 

Or if we  use Pauli spins 



Entanglement using spin squeezing 

See answer in notes on line 



Entanglement using spin squeezing: more! 

So!  There are many different LUR criteria for entanglement,  
using different observables and different uncertainty relations. 

These different criteria are useful in different situations 

ALSO 



Spin squeezing: useful for detecting 
entanglement with atoms 



Some spin squeezing formalism 



Spin squeezing: will be useful for 
detecting entanglement with atoms 

See notes on line for how the spin squeezed  
states can be generated 



Entangled atoms: spin squeezing criterion 

• N identical spin ! systems (atoms) denoted by i 
• Define and measure collective spins JX,JY,JZ-  

    
  (not able to test EPR/ nonlocality) 

• Each system satisfies Local Uncertainty Relation 

• What if the atoms are not entangled? 
! 

"JZ
i "JY

i # JX
i /2

! 

JZ = JZ
i

i=1

N

"



Entangled atoms: spin squeezing criterion 

This will constrain the statistics of the system 

! 

"JZ
i "JY

i # JX
i /2

! 

JZ = JZ
i

i=1

N

"

If there is no entanglement, we can write the density operator  
as a mixture of product states 

(1) First we note that for a single spin j system (finite dimensionality),  
there is a constraint on how large the variance in spin can get! 



Entangled atoms: spin squeezing criterion 

! 

"JZ
i "JY

i # JX
i /2

! 

JZ = JZ
i

i=1

N

"

! 

"2JZ # PR
R
$ ("R

2 JZ
i )

i=1

N

$ # PR
R
$ ("R

2 JZ
i )min

i=1

N

$

Assuming NO entanglement, we write 

Now consider the variance in the collective spin.  
(2) We use convexity and separability to get the first step (compare with previous proof) 

(3) What is the minimum variance for any single spin system? 
Use                                    we find  

! 

"2JZ
i # JX

i 2
/(2 j)2 $"2JZ

i # JX
i 2

where j =1/2 Applies to any R 



Entangled atoms: spin squeezing criterion 

Now use Cauchy Schwarz inequality 

! 

"2JZ # PR
R
$ ("R

2 JZ
i )

i=1

N

$ # PR
R
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2 JZ
i )min

i=1

N

$

! 

" PR
R
# J iX

2

i=1

N

#

" JX
2
/N

The Cauchy Schwarz applications are  
nontrivial - see extra notes on line 

Violation of this “spin squeezing inequality” indicate entanglement! 

 If we observe a collective spin squeezing good enough so 

Then we have entanglement (between at least 2 systems)  



But how many atoms entangled? 

Extent of spin squeezing determines degree of entanglement 

! 

"2JZ # PR
R
$ ("R

2 JZ )i
i=1

N

$ # PR$ ("R
2 JZ )i,min

i=1

N

$

As J increases, we can get better spin squeezing 
 thus, the amount of spin squeezing gives information about the minimum value of  j  
Which gives information about the minimum number of  atoms are entangled 



Entangled atoms: spin squeezing criterion 

! 

("JZ )
2 < JX

2
/N

~100 atoms  
entangled 



Genuine multipartite entanglement/ nonlocality  

Svetlichny asked same questions of nonlocality 1987  

How to detect it? 

Are 2 or 3 particles  
really entangled? 



Svetlichny’s Bell inequality 



But how many sites/ particles are genuinely 
entangled?  

Verifying genuine tripartite 
entanglement:  
need to measure entanglement but 
exclude that 2 party entanglement 
can completely describe the statistics 

A 
B 

C 

To prove bipartite entanglement AB, we exclude  



Criteria for multipartite entanglement? partial 
factorisation  

Verifying genuine tripartite 
entanglement:  
need to exclude that 2 party 
entanglement can describe the 
statistics 

Verifying genuine tripartite Bell nonlocality: need to exclude all 2 body nonlocality 

A 
B 

C 

!   B and C can be entangled 

To prove tripartite entanglement, we need to exclude all three forms for !&
Allowing  for 2 party entanglement 



Quantum cryptography 
Cryptography  

     Source prepared in a Bell state 

      Alice and Bob use correlated bits (up/ down) of Bell 
state for a quantum key           Ekert 

     They randomly switch the choice of spin 
measurement …. decision made locally after 
particles are in flight (%, %’, x,y;','’,x,y) 

     Get together later, check measurement angles 
(only)- where same, the result will be 
opposite….share a secret key (bit values) QKD 

    Security? –check results for violation of Bell 
inequality…..If Eve has eavesdropped, there will be 
no violation of Bell inequality 



Quantum teleportation 

Transferring a quantum state to a different location 



Problems with teleportation 

•  Alice wants to send a quantum state to Bob 

•  She cannot measure the state and then send the 
results (“measure and preparation”)  

•  If she sends the state itself, it might deteriorate 
on the way or take too long 



Four Bell States 

•  4 Bell states (the maximally nonlocal and entangled 
states) 

•  Form a basis for all 2 qubit systems 



Teleportation protocol 



Quantum teleportation 

Classical  
communication 



Calculate? 

! 

"AC
+ (# $ B + % & B )

+ "AC
' (# $ B ' % & B )

+(AC
+ (% $ B +# & b )

+(AC
' (% $ B '# & B )



Calculate? 

"  By performing a Bell measurement on AC state 
Alice knows that Bob’s system “collapses” (is 
REDUCED) into one of the above states  

"  EG if she measures          what is Bob’s state? 
! 

"AC
+ (# $ B + % & B )

+ "AC
' (# $ B ' % & B )

+(AC
+ (% $ B +# & B )

+(AC
' (% $ B '# & B )

! 

(" # B $ % & B )



Calculate? 

•  By sending the result classically to Bob, Alice 
instructs Bob which transformation to perform on 
his state – to get his qubit in the form of  

•  Bob operates locally using Pauli matrices – which 
Pauli matrix does he use if he gets the signal for 
the Bell state            ? (use      ) 

! 

" # B $ % & B '(
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4.    Applications- 


