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Motivation
Collective oscillations

Figure: Ring excitations in a binary BEC. Well predicted by coupled
Gross-Pitaevskii equations, but no analytical description and no formula
for collective oscillations frequency.

@ K. M. Mertes, J. W. Merrill, R. Carretero-Gonzlez, D. J.
Frantzeskakis, P. G. Kevrekidis, and D. S. Hall
Nonequilibrium dynamics and superfluid ring excitations in
binary Bose-Einstein condensates
Physical Review Letters 99, 190402 (2007).
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Dephasing and rephasing
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Figure: Periodic revivals of BEC phase coherence are observed. The
period coincides with the collective oscillations period. Again, the period
of revivals is needed to be found!

G M. Egorov, R. P. Anderson, V. lvannikov, B. Opanchuk, P.
Drummond, B. V. Hall, and A. |. Sidorov
Long-lived periodic revivals of coherence in an interacting
Bose-Einstein condensate
Phys. Rev. A 84, 021605 (2011)
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CGPE
Two-component action functional

S= / (51 + Ly — Upp |Wy? "Uz\z) d’r dt,
where

) L2 V2
Lj = iV} SV + W=

—V|V? - §Ujj vyl

and W =V(r), V= V(r), Uj= 4nhay

m
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Deriving coupled GPE

Stationary point of action functional

0S
ov:

=0, j=1,2

which is 9
W (Ll + Ez - U]_2\U>{\U]_\U;\U2) — 0
J

turns into Coupled Gross-Pitaevskii equations:

ihaw1_>_j#v2
ot 2m
awz__[h?v2

+ V(r) + U V1 * + U12|‘|’2|2} Vi,

if

e + V(r) + Upp|Wq* + U22|‘|’2|2} V.
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1D reduction

Action functional

In analogy with single-component case, in order to transform 3D
equations into 1D, we factorise the wavefunctions:

V; = ¢(x,y,01(2)) f1(2) Vs = ¢(x, y,02(2)) 2(2)

where
1 _ X2+y22
X oilz,t)) = —7———e€ 20(z:t) .

¢( 7y7 J( ) )) 71_1/20_].(2’ t)

Note that the wavefunctions are allowed to have different widths
which affect their overlap and, hence, interaction strength
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1D reduction

Action in cylindrical coordinates

Integrating all terms radially [ ...2mp dp, where P> = x>+ y? we

obtain: U
Lip =L Lowp — —— s R,
1D 1,0 + L21p W(U%—i—d%) 112 12
where
o h2 82 2.2 U:: f*f:
Ljo =FF |ihee 4 5oy — 22 VT
' J Ot 2moz2 2 47T(TJ2
h2 mw2o?
o . P fj-
2mo 2

And now, coupled Euler-Lagnrange equations can be obtained as:

OLw _ o OLw

815-* - doj
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1D reduction
Coupled Scrodinger equations

This results in following system of four 1D equations:

0 l B2 9%  mw2z? +< h? mwﬁa%)

L= |
"ot T | Tamoz T T2 2mo? T 2
Ui 2 Uro 2
f B2\
+ 27mf|1| +7r(af+a§)|2| b
h2 2 2.2 h2 mw20—2
ihgfz = o + T2 s+ —2 2
ot 2m 022 2 2mos 2
Ux 2 U2 2
f a2 £
+ 27TJ§|2| +7r(a%+a§)|1| 2
R, mwior 1 Uy 2 Urao 2
BN it b L B sl
m Toy (01 + 03)
hz _3 mw,0?2 1 Uy 2 U092 2
I _= _ A2 =0
2m”? 2 22 g'z‘ (0% + 02)? Al
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1D reduction

Weak interactions: 1D GPE

For |fj| < 1/ajj and |fj| < 1/aj;:
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1D reduction

Strong interactions: still difficult to solve analytically!

0 K2 92 mw2z2 mw201 Ur1 2 Ut 2
h—f = z p L7 A
Mot [2m822 2 2 T W iy B R

0 K2 92 mw2z2 mwzag Uso 2 Uro 2
ihof = . Bl + Al f,

ot [ 2m 0z2 2 2 2702 (02 + 02)

mwior 1 Uy o U201 £2_0
1 7 (07 + 03)

mwf,ag 1 Uy 5 Uiz0o f12 —

72 T (o7 +05)

Michael Egorov Dimensional reduction in two-component BECs



Application to 1D coupled GPE

Approximation Ny < Ny, or || < ||
easier.

makes the equations

The idea originally proposed for 1D GPE:

.. 0h 0% mw?z? Uao 2 Uiz 2
e z f- f f-
Ihé?t [ 2m 0z2 + 2 +27ra§|2| + A7

2ma2
Attractive trapping potential is parabolic

_ mw?z Uy 9 , Uiz 2 —
V= 2 7 27ra/2)‘f1| V= 27ra2|f1‘ n Ui — U12V
Un

Turn 1D coupled GPE equations into. . .
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Ny < Ny

Application to 1D coupled GPE

Approximation N < Ny, or |f] < ]fl\2 makes the equations

easier.
The idea originally proposed for 1D GPE:

R _
: * 27ra%

of:; h? 92 222 U U
ot 2m oz 2 2mag

|2 can be neglected if N, << Ny

L2 U —

mw?2? Uy / Uiz 2 —
V= A= AP V= [f1] _
2 2ma? 2ma? i+ U1 U12V
Ui

Turn 1D coupled GPE equations into. . .

Michael Egorov Dimensional reduction in two-component BECs




Ny < Ny

Application to 1D coupled GPE

Approximation N < Ny, or |f] < ]fl\2 makes the equations
easier.
The idea originally proposed for 1D GPE:

0f [ K2 92 mwgz2 U22

ih e = 2m 022 + 2 2

U2
f
" e L

2

Repulsive mean-field potential is also parabolic

2 a2|f1‘2 Uin —Uyps
P u—|——V

Turn 1D coupled GPE equations into. . .
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Application to 1D coupled GPE

Approximation Ny < Ny, or || < ||
easier.

The idea originally proposed for 1D GPE:

makes the equations

n9f 9 mwiz® Un o Un o
5 = "oz T s f AR
ot [ md2 T2 a2 P T | 2

Therefore, the sum is parabolic!

2
2ma 5

Turn 1D coupled GPE equations into. . .
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Ny

Effective single-component equation

. 81‘2 hz 82 d11 — a12 mw222
hat = |- z f
! ot 2m 0z2 + ail 2 th R

Effectively, a harmonic oscillator!
Note that:
@ This works only for aj; > ajo (for 8 Rb
|1) =|F =1,mg = —1) and |2) = |F = 2, mg = 1) states,
for example). Otherwise, it's a repulsive harmonic potential
which fails at the edges of BEC;

@ This is in the weak interactions limit!

[W Z. Dutton and C. Clark
Effective one-component description of two-component
Bose-Einstein condensate dynamics
Physical Review A, 71, no. 6, p. 063618 (2005)
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Ny < Ny

Effective single-component eg-s for strong interactions

For strong interactions (|f|2 > 1/a11) and Ny < Ny, |fi|? can be
defined using Thomas-Fermi approximation:

2 1 mw2z21? h
fIP =2 [’— 2 ] . ot =—/2a1 |f

where 1/ is chemical potential. The equations for the component 2
become:

03 =02 (2 a2 1>
ai1
. afz hz 82 4 di2 mw222 ,u’ dl1o
h—=|——=—+=(1—,/— z — 4,/ —=—-1]]|F
"ot [ 2m 0z2 + 3 an 2 + 3 an 2

Which is also effectively a harmonic oscillator!
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Ny < Ny

Effective single-component equation

So, the approximation Ny < N leads to..

Effective harmonic oscillator equation

where

g = (472 4 AN N E
eff g i ) eff \/§ a1 z
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(a) Mode n =1 (dipole). (b) Mode n = 2 (breathing).
Frequency: fo = 27 /wefr Frequency: fo = 47 /wesr
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Ny < Ny

Limits of applicability

Only excited if the relevant harmonic oscillator eigenstates fit into
BEC, i.e.

1 h
R%F,Z > 2 <n + 2>

MWeft

Figure: n =0, 1,2 states of harmonic oscillator fitting into the BEC
density profile

Michael Egorov Dimensional reduction in two-component BECs



Ny < Ny

Example: breathing mode frequency

Solid line: 3D coupled GPE;
Dotted line: analytical formula for strong interactions limit;
Dashed line: analytical formula for weak interactions limit.

Experimental parameters: 87Rb, |1) = |F = 1, mp = —1), [2) = |F = 2, mg = 1), 100 x 100 x 11.507 Hz
trap (Swinburne experiment)

f, Hz

0 . . . . . . . .
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Ny < Ny

Analytic solution

0h [ K2 iz mwgﬁz2

- f
2moZ | 2 +“eﬂ]2

fo(z, t) = et/ N [emtaenlitd) t g (, 2)
k=0

/ Uno(k, €) (€, 0) dé| |
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Density of state [2) ||? (c, d) (and state |1) (a, b)) in a two-component BEC.

Experimental parameters: 8'Rb, |1) = |F = 1, mp = —1),12) = |F =2, mg = 1), 100 x 100 x 11.507 Hz

trap (Swinburne experiment)

(a) Analytics

(b) GPE simulations
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Ny < Ny

Ramsey interferometry

)

TN+ N,

A — detuning of radiation from the transition frequency
¢ — additional level shifts

x cos(2rAT + @)
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Phase evolution

Experimental parameters: 8’Rb, |1) = |F =1, mg = —1),

|2) = |F =2, mg = 1), 100 x 100 x 11.507 Hz trap (Swinburne
experiment)

pz = (m — n2)/(m + n)

0.5

b,

Figure: (a) - anayltics, (b) - GPE simulations
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Ny < Ny

Atom number calibration

Collisional shift ¢ is proportional to chemical potential u which is
proportional to N2/5.

Ny — N,
Ny + N

P, x cos(2r At + atN?/%)

Knowing «, we can find atom number calibration Nyea1/ Nieasured-
Using 1D reduction in strong interactions limit:

2
4 135Nay1 %03 /m'\ °
: <1_ 312>(35 a1 ke m) £+ 0o

11
a2 272

P,(N) = Acos

)

Solid line: GPE simulations, Dotted line: analytics Dots:
experimental data points
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Ny < Ny

Atom number calibration

Using 1D reduction in strong interactions limit:

2
4 135Nay h2@3/m ) ®
1 aio 35 alluw m E+ g
3ﬁ ano

P,(N) = Acos

)

~0.3 1 1 1 1
0 2 x10* 4x10* 6 x10* 8 x10*

Nm,é:/l S

Solid line: GPE simulations, Dotted line: analytics Dots:
experimental data points
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