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Collective oscillations

Figure: Ring excitations in a binary BEC. Well predicted by coupled
Gross-Pitaevskii equations, but no analytical description and no formula
for collective oscillations frequency.

K. M. Mertes, J. W. Merrill, R. Carretero-Gonzlez, D. J.
Frantzeskakis, P. G. Kevrekidis, and D. S. Hall
Nonequilibrium dynamics and superfluid ring excitations in
binary Bose-Einstein condensates
Physical Review Letters 99, 190402 (2007).
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Dephasing and rephasing

Figure: Periodic revivals of BEC phase coherence are observed. The
period coincides with the collective oscillations period. Again, the period
of revivals is needed to be found!

M. Egorov, R. P. Anderson, V. Ivannikov, B. Opanchuk, P.
Drummond, B. V. Hall, and A. I. Sidorov
Long-lived periodic revivals of coherence in an interacting
Bose-Einstein condensate
Phys. Rev. A 84, 021605 (2011)
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Two-component action functional

S =

∫ (
L1 + L2 − U12 |Ψ1|2 |Ψ2|2

)
d3r dt,

where

Lj = i~Ψ∗j
∂

∂t
Ψj + Ψ∗j

~2∇2

2m
Ψj

− V |Ψj |2 −
1

2
Ujj |Ψj |4 .

and Ψ ≡ Ψ(r), V ≡ V (r), Uij =
4π~2aij

m
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Deriving coupled GPE

Stationary point of action functional

δS

δΨ∗j
= 0, j = 1, 2

which is
∂

∂Ψ∗j
(L1 + L2 − U12Ψ∗1Ψ1Ψ∗2Ψ2) = 0

turns into Coupled Gross-Pitaevskii equations:

i~
∂Ψ1

∂t
=

[
−~2∇2

2m
+ V (r) + U11|Ψ1|2 + U12|Ψ2|2

]
Ψ1,

i~
∂Ψ2

∂t
=

[
−~2∇2

2m
+ V (r) + U12|Ψ1|2 + U22|Ψ2|2

]
Ψ2.
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Action functional

In analogy with single-component case, in order to transform 3D
equations into 1D, we factorise the wavefunctions:

Ψ1 = φ(x , y , σ1(z)) f1(z) Ψ2 = φ(x , y , σ2(z)) f2(z)

where

φ(x , y , σj (z , t)) =
1

π1/2σj (z , t)
e
− x2+y2

2σj (z,t)
2
.

Note that the wavefunctions are allowed to have different widths
which affect their overlap and, hence, interaction strength
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Action in cylindrical coordinates

Integrating all terms radially
∫
. . . 2πρ dρ, where ρ2 = x2 + y2, we

obtain:

L1D = L1,1D + L2,1D −
U12

π(σ21 + σ22)
f ∗1 f1f

∗
2 f2,

where

Lj ,1D =f ∗j

[
i~
∂

∂t
+

~2

2m

∂2

∂z2
− mω2

z z
2

2
−

Ujj f
∗

j fj

4πσ2j

− ~2

2mσ2j
−

mω2
ρσ

2
j

2

]
fj

And now, coupled Euler-Lagnrange equations can be obtained as:

∂L1D

∂f ∗j
= 0,

∂L1D

∂σj
= 0

Michael Egorov Dimensional reduction in two-component BECs



Motivation CGPE 1D reduction N2 � N1 Bibliography

Coupled Scrödinger equations

This results in following system of four 1D equations:

i~
∂

∂t
f1 =

[
− ~2

2m

∂2

∂z2
+

mω2
z z

2

2
+

(
~2

2mσ2
1

+
mω2

ρσ
2
1

2

)

+
U11

2πσ2
1

|f1|2 +
U12

π (σ2
1 + σ2

2)
|f2|2

]
f1,

i~
∂

∂t
f2 =

[
− ~2

2m

∂2

∂z2
+

mω2
z z

2

2
+

(
~2

2mσ2
2

+
mω2

ρσ
2
2

2

)

+
U22

2πσ2
2

|f2|2 +
U12

π (σ2
1 + σ2

2)
|f1|2

]
f2,

− ~2

2m
σ−3
1 +

mω2
ρσ1

2
− 1

2

U11

2πσ3
1

|f1|2 −
U12σ1

π (σ2
1 + σ2

2)
2 |f2|

2 = 0,

− ~2

2m
σ−3
2 +

mω2
ρσ2

2
− 1

2

U22

2πσ3
2

|f2|2 −
U12σ2

π (σ2
1 + σ2

2)
2 |f1|

2 = 0.
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Weak interactions: 1D GPE

For |fj | � 1/ajj and |fj | � 1/aij :

σ1 = σ2 =

√
~

mωρ
= aρ

i~
∂f1
∂t

=

[
− ~2

2m

∂2

∂z2
+

mω2
z z

2

2
+

U11

2πa2ρ
|f1|2 +

U12

2πa2ρ
|f2|2

]
f1

i~
∂f2
∂t

=

[
− ~2

2m

∂2

∂z2
+

mω2
z z

2

2
+

U22

2πa2ρ
|f2|2 +

U12

2πa2ρ
|f1|2

]
f2
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Strong interactions: still difficult to solve analytically!

i~
∂

∂t
f1 =

[
− ~2

2m

∂2

∂z2
+

mω2
z z

2

2
+

mω2
ρσ

2
1

2
+

U11

2πσ2
1

|f1|2 +
U12

π (σ2
1 + σ2

2)
|f2|2

]
f1,

i~
∂

∂t
f2 =

[
− ~2

2m

∂2

∂z2
+

mω2
z z

2

2
+

mω2
ρσ

2
2

2
+

U22

2πσ2
2

|f2|2 +
U12

π (σ2
1 + σ2

2)
|f1|2

]
f2,

mω2
ρσ1

2
− 1

2

U11

2πσ3
1

|f1|2 −
U12σ1

π (σ2
1 + σ2

2)
2 |f2|

2 = 0,

mω2
ρσ2

2
− 1

2

U22

2πσ3
2

|f2|2 −
U12σ2

π (σ2
1 + σ2

2)
2 |f1|

2 = 0.
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Application to 1D coupled GPE

Approximation N2 � N1, or |f2| � |f1|2 makes the equations
easier.
The idea originally proposed for 1D GPE:

i~
∂f2
∂t

=

[
− ~2

2m

∂2

∂z2
+

mω2
z z

2

2
+

U22

2πa2ρ
|f2|2 +

U12

2πa2ρ
|f1|2

]
f2

Attractive trapping potential is parabolic

Turn 1D coupled GPE equations into. . .
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Application to 1D coupled GPE

Approximation N2 � N1, or |f2| � |f1|2 makes the equations
easier.
The idea originally proposed for 1D GPE:

i~
∂f2
∂t

=

[
− ~2

2m

∂2

∂z2
+

mω2
z z

2

2
+

U22

2πa2ρ
|f2|2 +

U12

2πa2ρ
|f1|2

]
f2

|f2|2 can be neglected if N2 � N1

Turn 1D coupled GPE equations into. . .
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Application to 1D coupled GPE

Approximation N2 � N1, or |f2| � |f1|2 makes the equations
easier.
The idea originally proposed for 1D GPE:

i~
∂f2
∂t

=

[
− ~2

2m

∂2

∂z2
+

mω2
z z

2

2
+

U22

2πa2ρ
|f2|2 +

U12

2πa2ρ
|f1|2

]
f2

Repulsive mean-field potential is also parabolic

Turn 1D coupled GPE equations into. . .
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Application to 1D coupled GPE

Approximation N2 � N1, or |f2| � |f1|2 makes the equations
easier.
The idea originally proposed for 1D GPE:

i~
∂f2
∂t

=

[
− ~2

2m

∂2

∂z2
+

mω2
z z

2

2
+

U22

2πa2ρ
|f2|2 +

U12

2πa2ρ
|f1|2

]
f2

Therefore, the sum is parabolic!

Turn 1D coupled GPE equations into. . .
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Effective single-component equation

i~
∂f2
∂t

=

[
− ~2

2m

∂2

∂z2
+

a11 − a12
a11

mω2
z z

2

2
+ µ

]
f2

Effectively, a harmonic oscillator!
Note that:

This works only for a11 > a12 (for 87 Rb
|1〉 ≡ |F = 1,mF = −1〉 and |2〉 ≡ |F = 2,mF = 1〉 states,
for example). Otherwise, it’s a repulsive harmonic potential
which fails at the edges of BEC;

This is in the weak interactions limit!

Z. Dutton and C. Clark
Effective one-component description of two-component
Bose-Einstein condensate dynamics
Physical Review A, 71, no. 6, p. 063618 (2005)
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Effective single-component eq-s for strong interactions

For strong interactions (|f1|2 � 1/a11) and N2 � N1, |f1|2 can be
defined using Thomas-Fermi approximation:

|f |2 =
2

9

1

(~ωρ)2 a11

[
µ′ − mω2

z z
2

2

]2
, σ21 =

~
2m

√
2a11 |f1|

where µ′ is chemical potential. The equations for the component 2
become:

σ22 =σ21

(
2

√
a12
a11
− 1

)
i~
∂f2
∂t

=

[
− ~2

2m

∂2

∂z2
+

4

3

(
1−

√
a12
a11

)
mω2

z z
2

2
+
µ′

3

(
4

√
a12
a11
− 1

)]
f2

Which is also effectively a harmonic oscillator!
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Effective single-component equation

So, the approximation N2 � N1 leads to..

Effective harmonic oscillator equation

i~
∂f2
∂t

=

[
− ~2

2m

∂2

∂z2
+

mω2
effz

2

2
+ µeff

]
f2

where

In weak interactions limit |f1| � 1/a11

µeff = µ

(
a12
a11
− 1

)
, ωeff = ωz

√
1− a12

a11

In strong interactions limit |f1| � 1/a11

µeff =
µ′

3

(
4

√
a12
a11
− 1

)
, ωeff =

2√
3

√
1−

√
a12
a11

ωz
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Collective oscillations

Effective harmonic oscillator equation

i~
∂f2
∂t

=

[
− ~2

2m

∂2

∂z2
+

mω2
effz

2

2
+ µeff

]
f2

(a) Mode n = 1 (dipole).
Frequency: fc = 2π/ωeff

(b) Mode n = 2 (breathing).
Frequency: fc = 4π/ωeff
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Limits of applicability

Only excited if the relevant harmonic oscillator eigenstates fit into
BEC, i.e.

R2
TF,z � 2

(
n +

1

2

)
~

mωeff

4 2 0 2 4
6

4

2

0

2

4

6

8
1e7

Figure: n = 0, 1, 2 states of harmonic oscillator fitting into the BEC
density profile
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Example: breathing mode frequency

Solid line: 3D coupled GPE;
Dotted line: analytical formula for strong interactions limit;
Dashed line: analytical formula for weak interactions limit.
Experimental parameters: 87Rb, |1〉 ≡ |F = 1,mF = −1〉, |2〉 ≡ |F = 2,mF = 1〉, 100× 100× 11.507 Hz
trap (Swinburne experiment)
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Analytic solution

i~
∂f2
∂t

=

[
− ~2

2m

∂2

∂z2
+

mω2
effz

2

2
+ µeff

]
f2

Solution

f2(z , t) = e−iµefft/~
∞∑

k=0

[
e−iωeff(k+ 1

2) t ψho(k, z)∫
ψho(k, ξ) f2(ξ, 0) dξ

]
,
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Density evolution
Density of state |2〉 |f2|2 (c, d) (and state |1〉 (a, b)) in a two-component BEC.

Experimental parameters: 87Rb, |1〉 ≡ |F = 1,mF = −1〉, |2〉 ≡ |F = 2,mF = 1〉, 100× 100× 11.507 Hz
trap (Swinburne experiment)
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(b) GPE simulations
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Ramsey interferometry

Pz ≡
N1 − N2

N1 + N2
∝ cos(2π∆T + φ)

∆ — detuning of radiation from the transition frequency
φ — additional level shifts
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Phase evolution

Experimental parameters: 87Rb, |1〉 ≡ |F = 1,mF = −1〉,
|2〉 ≡ |F = 2,mF = 1〉, 100× 100× 11.507 Hz trap (Swinburne
experiment)
pz = (n1 − n2)/(n1 + n2)
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Figure: (a) - anayltics, (b) - GPE simulations
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Atom number calibration

Collisional shift φ is proportional to chemical potential µ which is
proportional to N2/5.

Pz ≡
N1 − N2

N1 + N2
∝ cos(2π∆t + αtN2/5)

Knowing α, we can find atom number calibration Nreal/Nmeasured.
Using 1D reduction in strong interactions limit:

Pz (N) = A cos

[
4

3~

(
1−

√
a12
a22

)(
135Na11~2ω̄3√m

2
11
2

) 2
5

t + ϕ0

]
,

Solid line: GPE simulations, Dotted line: analytics Dots:
experimental data points
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Atom number calibration

Using 1D reduction in strong interactions limit:

Pz (N) = A cos

[
4

3~

(
1−

√
a12
a22

)(
135Na11~2ω̄3√m

2
11
2

) 2
5

t + ϕ0

]
,

0 2×104 4×104 6×104 8×104

Nmeas
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Solid line: GPE simulations, Dotted line: analytics Dots:
experimental data points
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