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Quantum dynamics

ULTRALOW temperatures down to 1nK J
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Quantum dynamics

ULTRALOW temperatures down to 1nK J

Atoms are trapped in a hard vacuum

Cooling to nanoKelvins or less
Can have either bosons or fermions
Atom ‘lasers’ - atoms behave as quantum objects

Correlations - mean field theory doesn’t always work

Dynamics - time-evolution is very important
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Quantum dynamics

Typical experiment (Orsay, ANU)
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Quantum dynamics

How to calculate dynamics?

Classical solution: - use Hamilton's equations

. oH
= _9qi
. 9H
g = op;

Quantum mechanics replaces classical quantities by corresponding
operators with commutators, so that

[gi,9] = [pi,p]=0
Then, for any operator O, in the Heisenberg picture:
00 11~ ~
“_ o
Jot ih [ ’ }
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Quantum dynamics

What about mixtures of states?

Suppose the quantum system is in a mixture of quantum states
|wm) with probability p,, . Then the density matrix p is defined as:

p= me|‘//m> (V|

In the Schroedinger picture, we let states evolve in time, not
operators!

5]
oY

e

SB]
~

Then, for any operator O, the expectation value of the observable
is:
(0) = 7p0]
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Quantum dynamics

What is the Hamiltonian anyway?

What about the quantum fields with hats?

Recall from the BEC lectures V; is a quantum field of spin-index i:

~

U;(x), ﬁzj(x’)} | = 8;8°(x—x)
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Quantum dynamics

What is the Hamiltonian anyway?

What about the quantum fields with hats?

Recall from the BEC lectures V; is a quantum field of spin-index i:

~

U;(x), ﬁzj(x’)} | = 8;8°(x—x)

In second quantization the quantum Hamiltonian is

o P v Ui (x)W
= Z/d X9 5 VVH(%) - VVi(x) + Vi(x)Vi (x)¥i(x)

b [ dPU 0T (60 i(x)
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Quantum dynamics

What are the parameters?

This describes a dilute gas at low enough temperatures,

<\TJ‘(x)\TJ,(x)> is the spin i atomic density,

1

m is the atomic mass,

V; is the atomic trapping potential & Zeeman shift

Ujj is related to the S-wave scattering length in three
dimensions by:
47rh2a,-j
Up=———
m

@ Here we implicitly assume a momentum cutoff k. << 1/a
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Quantum dynamics

How do we treat quantum fields?

Any field operator W can be expanded in orthogonal modes

amum

Where: [ d3x u?

v (x)
m (X) Un (X) = Omn
Nonvanishing field (anti)-co

ommutators are given by:

[\TJ (x),¥" (x’)} L= 83 (x—x)

(+) = anticommutator (FERMION) and
(—) = commutator (BOSON)

(1) Prove as an exercise that: [am,8}], = 8mn . [3m,8n]L =0
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Quantum dynamics

What do the mode operators do?

Bosons <> harmonic oscillators; fermions <> two-level atoms

3" |N)= 8y |N+1) (FERMION)
3" |N)=+vN+1|N+1) (BOSON)
alN)=VN|N—1)
Hence the single mode number operator is N = 474:

NNy =2a"a|N) = a"VN|N —1) = N|N)

(2) In the FERMION case, use anticommutators to prove you can
only have N=0,1
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Correlations and Coherence

What about multi-time correlations?

Suppose we count atoms at multiple times and locations, using
delayed coincidences

The rate of counting atoms of spins i1,...i,, at positions and times:
x1 = (t1,X1),- -+ Xm = (tm,Xm) is:

G(m (xl,...xzm):<®f (x1)... 0 (xm)ﬁx(xm)...@(xl)>

Note: two-time correlation functions with different arguments like

GO (x1,x0) = <\JAJT (xl)\TJ(x2)> require momentum transfer, eg

Bragg scattering, for their measurement.
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Correlations and Coherence

m-th order coherence

It is useful to define a normalized coherence function as:

G(m) (X1, .. X2m)

12271 n(x;)

g(m) (Xl,...Xgm) =

e n(xj) = <UAJT (x1)®(x1)> is the counting rate or atom density.

@ We say we have complete m— th order coherence if g(™ = 1.
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Correlations and Coherence

What quantum states can we have?

Quantum states are generated from the vacuum state

@ Number states:

N1
i )N
al) ...(a},)
’Nl,...Nm>:< >N1!...Nm! o

@ Properties:
(M| N) = Spnym, - - - On,y M,

@ Fermion case: must have N; =0,1 ( )

All other states can be generated using linear combinations
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Correlations and Coherence

Example: single mode coherent state

Single mode coherent state has a well-defined phase

@ Boson case: Glauber coherent state:

o) = %3112 |0) = laP/2 T L
N=o VN!

@ Fermion case: Generalized coherent state (see later)

(3) Prove as an exercise:

(@] B)P = e71P!
alo) = o)

2
(o] 2"a]a) = |
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Exponential complexity

Simplest method for state evolution

Suppose the quantum system is described by a few modes:

W)=Y wn [N, Nao,... Nim) = Y i IN)

Then, let Hum = (N|H|M) and: & |y) = — L |y)
Hence, we have a simple matrix equation:

d i
N _E%I:HNM‘VM

(4) Prove the last equation using orthogonality
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Exponential complexity

Problem: quantum theory is exponentially complex!

Quantum many-body problems are very large

@ consider N particles distributed among M modes
take N ~ M ~ 500, 000:

Number of quantum states: Ny = 22N = 21,000,000

How big is your computer?

o
o
@ More quantum states than atoms in the universe
o
o

Can’t diagonalize 21:000.000 5 51,000,000 Hamjltonian!

P. D. Drummond Gaussian Phase-Space Representations |



Exponential complexity

What about losses and damping?

Damping can be treated using a master equation

@ The density matrix p evolves as:
dp iy A "3 n
L [A) +;KJ/ d*r;[p)

@ Here the Liouville terms describe coupling to the reservoirs:

A A A

Z[p]=20;p0f — 0] 0;p —pO; O;

~

A n
@ For n-particle collisions: O; = [\Ifi(r)}
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Exponential complexity

Traditional quantum theory methods?

@ numerical diagonalisation?
intractable for > 10 modes
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Exponential complexity

Traditional quantum theory methods?

@ numerical diagonalisation?
intractable for > 10 modes

@ operator factorization
not applicable for strong correlations
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Exponential complexity

Traditional quantum theory methods?

@ numerical diagonalisation?
intractable for > 10 modes

@ operator factorization
not applicable for strong correlations

@ perturbation theory
diverges at strong couplings
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Exponential complexity

Traditional quantum theory methods?

@ numerical diagonalisation?
intractable for > 10 modes

@ operator factorization
not applicable for strong correlations

@ perturbation theory
diverges at strong couplings

@ exact solutions
not applicable for quantum dynamics
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Wigner stochastic equations

Quantum theory in classical phase-space

Properties of Wigner/Moyal phase-space

@ Maps quantum states into classical phase-space o = p+ ix
@ Wigner first published this representation
@ Moyal showed equivalence to quantum mechanics

e Complexity grows only linearly with number of modes!

Problem: Wigner distribution can have negative values

@ Need to truncate equations to get positive probabilities
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Wigner stochastic equations

Detailed equivalence

Mapping of characteristic functions

W(et) = é\ﬂ/dz’\/’z<e"z'(5“)+"z*'(é+“*)>
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Wigner stochastic equations

Detailed equivalence

Mapping of characteristic functions

W (@) 1 /dZMZ<eiz»(5fa)+iz*-(éta*)>

- m2M

Operator mean values

ATma _ 2M _
o <a,. aj">5YM_fd aa;“mocj”W(a)_<a;”"ocj”>

w

)
° <3’,T3’j + g,a?> /2= {aj )y
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Wigner stochastic equations

Dynamical equivalence

Mapping of dynamical equations

oW(e) 1 om_ 1. [9P iz (a-a)tiz (s'-a)
3t _7r2"/’/d zTr Ee
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Wigner stochastic equations

Dynamical equivalence

Mapping of dynamical equations

oW(e) 1 2M 9p iz(a-a)+iz" (4" —a*)
5 _7r2"/’/d zTr Ee

Operator mappings

8 éJﬁg)(aJ+%8icj w
° ﬁ“}—>(o¢j‘+%a%j)w
° “jﬁ—>(ocj‘—%£j>w
° ﬁAj—><0‘j—%ai;>W
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Wigner stochastic equations

Example: Wigner function for a coherent state

Suppose we have a single-mode BEC in a coherent state

= | o) (ool

Hence:

W(Ol /d2 o |eIZ (3—a)+iz: (a )\060>

’

Solution with a little algebra

("]
W(a) = 2 g-2la—oof*
T

(5): show that this solution gives (a*a) = 1/2 for a vacuum state
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Wigner stochastic equations

Example: time-evolution of harmonic oscillator

Consider the harmonic oscillator
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Wigner stochastic equations

Example: time-evolution of harmonic oscillator

Consider the harmonic oscillator
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Wigner stochastic equations

Harmonic oscillator solution

General result for harmonic oscillator

oW =i (a(x— J a*> w

at

Solution by method of characteristics

o do*

a—a——'wa
at

A

(6): Prove this!
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Wigner stochastic equations

Fokker-Planck equations

Result of operator mappings:

ot | da; ' 2da;d0; g 6 da;do;day

T;jk+...}W

Scaling to eliminate higher-order terms

x=a/VN
ow

1 9 1 92 1
3t =yt a2 () W
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Wigner stochastic equations

Stochastic equation

Result of operator mappings + truncation - valid if N/M >> 1:
oW d 1 02
— = ——A+-———D;; ; W
ot { a0, " 29mda; f}

Equivalent stochastic equation

v

aOC,'
Jot

= A (1)

where:

(Gi(t)&i (t)) = Dyé (t—t')
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Wigner stochastic equations

Example: BEC case

Result of operator mappings + truncation - for the GPE:
dy; . :
5 — ik — U5 WP — v+ VG (%, )

Here the linear unitary evolution of the wave-function, is described
by:
K; = hv2/2m— V; (1)

while §i(x,t) is a complex, stochastic delta-correlated Gaussian
noise with

(i, )G} (X', t')) = §;8% (x—x) & (t— ') .

i : . / 1 /
Initial fluctuations: (AW(x)AV;(x')) = 365,6° (x—x')




Wigner stochastic equations

Interferometry on an atom chip
BYA T

— —— = ' =
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Wigner stochastic equations

Interferometry

A two-component 8 Rb BEC is in a harmonic trap with internal
Zeeman states |1, —1) and |2, 1), which can be coupled via an RF
-20
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Wigner stochastic equations

Wigner simulations vs BEC fringe visibility

Blue line = Wigner simulation, black line = Wigner + local
oscillator noise, red dots = GPE, error bars are measured

T (s)
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Wigner stochastic equations

SUMMARY

Phase-space representation methods have many applications J
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Wigner stochastic equations

SUMMARY

Phase-space representation methods have many applications J

Wigner phase-space is relatively simple!

@ Maps quantum field evolution into a stochastic equation

@ Can also be used to treat interferometry
@ Advantage: No exponential complexity issues!
@ Mathematical challenge:

e truncation error needs to be checked
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