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Ultracold atoms - the ideal quantum system

ULTRALOW temperatures down to 1nK

What is different about ultracold atoms?
Atoms are trapped in a hard vacuum
Cooling to nanoKelvins or less
Can have either bosons or fermions
Atom ‘lasers’ - atoms behave as quantum objects
Correlations - mean field theory doesn’t always work
Dynamics - time-evolution is very important
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Typical experiment (Orsay, ANU)
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How to calculate dynamics?

Classical solution: - use Hamilton’s equations

ṗi = −∂H
∂qi

q̇i =
∂H
∂pi

Quantum mechanics replaces classical quantities by corresponding
operators with commutators, so that

[q̂i , p̂j ] = i h̄δij

[q̂i , q̂j ] = [p̂i , p̂j ] = 0

Then, for any operator Ô, in the Heisenberg picture:

∂ Ô
∂ t

=
1
i h̄

[
Ô, Ĥ

]
P. D. Drummond Gaussian Phase-Space Representations I
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What about mixtures of states?

Suppose the quantum system is in a mixture of quantum states
|ψm〉 with probability pm . Then the density matrix ρ̂ is defined as:

ρ̂ = ∑
m

pm |ψm〉〈ψm|

In the Schroedinger picture, we let states evolve in time, not
operators!

∂ ρ̂

∂ t
=

1
i h̄

[
Ĥ, ρ̂

]
Then, for any operator Ô, the expectation value of the observable
is: 〈

Ô
〉

= Tr
[
ρ̂Ô
]

P. D. Drummond Gaussian Phase-Space Representations I
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What is the Hamiltonian anyway?

What about the quantum fields with hats?

Recall from the BEC lectures Ψ̂i is a quantum field of spin-index i :[
Ψ̂i (x),Ψ̂†

i (x′)
]
±

= δijδ
D(x−x′)

In second quantization the quantum Hamiltonian is

Ĥ = ∑
i

∫
dDx

{
h̄2

2m
∇Ψ̂†

i (x) ·∇Ψ̂i (x) +Vi (x)Ψ̂†
i (x)Ψ̂i (x)

}

+ ∑
ij

Uij

2

∫
dDxΨ̂†

i (x)Ψ̂†
j (x)Ψ̂j(x)Ψ̂i (x) .
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What are the parameters?

This describes a dilute gas at low enough temperatures,

〈Ψ̂†
i (x)Ψ̂i (x)〉 is the spin i atomic density,

m is the atomic mass,
Vi is the atomic trapping potential & Zeeman shift
Uij is related to the S-wave scattering length in three
dimensions by:

Uij =
4π h̄2aij

m
.

Here we implicitly assume a momentum cutoff kc << 1/a
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How do we treat quantum fields?

Any field operator Ψ̂ can be expanded in orthogonal modes
:

Ψ̂(x) = ∑ âmum (x)

Where:
∫

d3x u∗m (x)un (x) = δmn
Nonvanishing field (anti)-commutators are given by:[

Ψ̂(x) ,Ψ̂† (x′)]
±

= δ
3 (x−x′)

(+) = anticommutator (FERMION) and
(−) = commutator (BOSON)

(1) Prove as an exercise that:
[
âm, â†

n
]
± = δmn , [âm, ân]± = 0

P. D. Drummond Gaussian Phase-Space Representations I



Quantum dynamics
Correlations and Coherence

Exponential complexity
Wigner stochastic equations

What do the mode operators do?

Bosons ↔ harmonic oscillators; fermions ↔ two-level atoms

â† |N〉= δN |N +1〉 (FERMION)

â† |N〉=
√

N +1 |N +1〉 (BOSON)

â |N〉=
√

N |N−1〉

Hence the single mode number operator is N̂ = â†â:

N̂ |N〉= â†â |N〉= â†
√

N |N−1〉= N |N〉

(2) In the FERMION case, use anticommutators to prove you can
only have N = 0,1
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What about multi-time correlations?

Suppose we count atoms at multiple times and locations, using
delayed coincidences
:
The rate of counting atoms of spins i1, . . . im, at positions and times:
x1 = (t1,x1),. . . xm = (tm,xm) is:

G (m) (x1, . . .x2m) =
〈

Ψ̂†
i1 (x1) . . .Ψ̂†

im (xm)Ψ̂(xm) . . .Ψ̂(x1)
〉

=Tr
[
ρ̂Ψ̂† (x1) . . .Ψ̂† (xm)Ψ̂(xm) . . .Ψ̂(x1)

]
Note: two-time correlation functions with different arguments like
G (1) (x1,x2) =

〈
Ψ̂† (x1)Ψ̂(x2)

〉
require momentum transfer, eg

Bragg scattering, for their measurement.
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m-th order coherence

It is useful to define a normalized coherence function as:

g (m) (x1, . . .x2m) =
G (m) (x1, . . .x2m)√

∏
2m
j=1 n (xj)

n (xj) =
〈

Ψ̂† (x1)Ψ̂(x1)
〉
is the counting rate or atom density.

We say we have complete m− th order coherence if g (m) = 1.

P. D. Drummond Gaussian Phase-Space Representations I
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What quantum states can we have?

Quantum states are generated from the vacuum state
Number states:

|N1, . . .Nm〉=

(
a†
1

)N1
. . .
(
a†
m
)Nm

√
N1! . . .Nm!

|0〉

Properties:
〈M|N〉= δN1M1 . . .δNmMm

Fermion case: must have Nj = 0,1 (you just proved this)

All other states can be generated using linear combinations
P. D. Drummond Gaussian Phase-Space Representations I
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Example: single mode coherent state

Single mode coherent state has a well-defined phase
Boson case: Glauber coherent state:

|α〉= eα â†−|α|2/2 |0〉= e−|α|
2/2

∞

∑
N=0

αN
√

N!
|N〉

Fermion case: Generalized coherent state (see later)

(3) Prove as an exercise:

|〈α| β 〉|2 = e−|α−β |2

â |α〉= α |α〉
〈α| â†â |α〉= |α|2

P. D. Drummond Gaussian Phase-Space Representations I



Quantum dynamics
Correlations and Coherence

Exponential complexity
Wigner stochastic equations

Simplest method for state evolution

Suppose the quantum system is described by a few modes:

|ψ〉= ∑ψN |N1,N2, . . .Nm〉= ∑ψN |N〉

Then, let HNM = 〈N| Ĥ |M〉 and: d
dt |ψ〉=− i

h̄ Ĥ |ψ〉
Hence, we have a simple matrix equation:

d
dt

ψN =− i
h̄ ∑

M
HNMψM

(4) Prove the last equation using orthogonality

P. D. Drummond Gaussian Phase-Space Representations I
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Problem: quantum theory is exponentially complex!

Quantum many-body problems are very large
consider N particles distributed among M modes
take N 'M ' 500,000:
Number of quantum states: Ns = 22N = 21,000,000

More quantum states than atoms in the universe
How big is your computer?
Can’t diagonalize 21,000,000×21,000,000 Hamiltonian!
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What about losses and damping?

Damping can be treated using a master equation

The density matrix ρ̂ evolves as:

d ρ̂

dt
=− i

h̄

[
Ĥ, ρ̂

]
+∑

j
κj

∫
d3rLj [ρ̂]

Here the Liouville terms describe coupling to the reservoirs:

Lj [ρ̂] = 2Ôj ρ̂Ô†
j − Ô†

j Ôj ρ̂− ρ̂Ô†
j Ôj

For n-particle collisions: Ôi =
[
Ψ̂i (r)

]n
P. D. Drummond Gaussian Phase-Space Representations I
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Traditional quantum theory methods?

numerical diagonalisation?
intractable for & 10 modes

operator factorization
not applicable for strong correlations

perturbation theory
diverges at strong couplings

exact solutions
not applicable for quantum dynamics
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Quantum theory in classical phase-space

Properties of Wigner/Moyal phase-space

Maps quantum states into classical phase-space α = p + ix
Wigner first published this representation
Moyal showed equivalence to quantum mechanics
Complexity grows only linearly with number of modes!

Problem: Wigner distribution can have negative values

Need to truncate equations to get positive probabilities
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Detailed equivalence

Mapping of characteristic functions

W (ααα) =
1

π2M

∫
d2Mz

〈
e iz·(â−ααα)+iz∗·(â†−ααα∗)

〉

Operator mean values〈
â†m
i ân

j

〉
SYM

=
∫

d2Mαααα∗mi αn
j W (ααα) =

〈
α∗mi αn

j

〉
W

〈âj〉= 〈αj〉W〈
â†
i âj + âi â†

j

〉
/2 = 〈α∗i αj〉W

P. D. Drummond Gaussian Phase-Space Representations I
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Dynamical equivalence

Mapping of dynamical equations

∂W (ααα)

∂ t
=

1
π2M

∫
d2MzTr

[
∂ ρ̂

∂ t
e iz·(â−ααα)+iz∗·(â†−ααα∗)

]

Operator mappings

âj ρ̂ →
(

αj + 1
2

∂

∂α∗j

)
W

ρ̂ â†
j →

(
α∗j + 1

2
∂

∂αj

)
W

â†
j ρ̂ →

(
α∗j −

1
2

∂

∂αj

)
W

ρ̂ âj →
(

αj − 1
2

∂

∂α∗j

)
W
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Example: Wigner function for a coherent state

Suppose we have a single-mode BEC in a coherent state

ρ̂ = |α0〉〈α0|

Hence:

W (α) =
1

π2

∫
d2z 〈α0|e iz ·(â−α)+iz ·(â†−α∗) |α0〉

Solution with a little algebra

W (α) =
2
π

e−2|α−α0|2

(5): show that this solution gives 〈α∗α〉= 1/2 for a vacuum state
P. D. Drummond Gaussian Phase-Space Representations I
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Example: time-evolution of harmonic oscillator

Consider the harmonic oscillator

Ĥ= h̄ω â†â
∂ ρ̂

∂ t
=−iω

[
â†âρ̂− ρ̂ â†â

]
Operator mappings

â†âρ̂ →
(

α∗− 1
2

∂

∂α

)(
α + 1

2
∂

∂α∗

)
W

ρ̂ â†â→
(

α− 1
2

∂

∂α∗

)(
α∗+ 1

2
∂

∂α

)
W

∂W
∂ t

= iω
(

∂

∂α
α− ∂

∂α∗
α
∗
)

W
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Harmonic oscillator solution

General result for harmonic oscillator

∂W
∂ t

= iω
(

∂

∂α
α− ∂

∂α∗
α
∗
)

W

Solution by method of characteristics

∂α

∂ t
=−iωα

α(t) = α(0)e−iωt

(6): Prove this!
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Fokker-Planck equations

Result of operator mappings:

∂W
∂ t

=

{
− ∂

∂αi
Ai +

1
2

∂ 2

∂αi∂α∗j
Dij +

1
6

∂ 3

∂αi∂α∗j ∂α∗k
Tijk + . . .

}
W

Scaling to eliminate higher-order terms

x = α/
√

N

∂W
∂ t

=

{
− 1√

N
∂

∂xi
Ai +

1
2N

∂ 2

∂xi∂xj
Dij +O

(
1

N3/2

)}
W

P. D. Drummond Gaussian Phase-Space Representations I



Quantum dynamics
Correlations and Coherence

Exponential complexity
Wigner stochastic equations

Stochastic equation

Result of operator mappings + truncation - valid if N/M >> 1:

∂W
∂ t

=

{
− ∂

∂αi
Ai +

1
2

∂ 2

∂αi∂α∗j
Dij

}
W

Equivalent stochastic equation

∂αi

∂ t
= Ai + ζi (t)

where: 〈
ζi (t)ζ

∗
j (t)

〉
= Dijδ

(
t− t ′

)

P. D. Drummond Gaussian Phase-Space Representations I



Quantum dynamics
Correlations and Coherence

Exponential complexity
Wigner stochastic equations

Example: BEC case

Result of operator mappings + truncation - for the GPE:

dψj

dt
= iKjψj − iUij |ψi |2ψj − γjψj +

√
γjζj(x, t)

Here the linear unitary evolution of the wave-function, is described
by:

Kj = h̄∇
2/2m−Vj (r)

while ζi (x, t) is a complex, stochastic delta-correlated Gaussian
noise with 〈

ζi (x, t)ζ
∗
j (x′, t ′)

〉
= δijδ

3 (x−x′)δ
(
t− t ′

)
.

Initial fluctuations: 〈∆Ψs(x)∆Ψ∗u(x′)〉= 1
2δsuδ 3 (x−x′)
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Interferometry on an atom chip
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Interferometry

A two-component 87Rb BEC is in a harmonic trap with internal
Zeeman states |1, −1〉 and |2, 1〉, which can be coupled via an RF
field.
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Wigner simulations vs BEC fringe visibility

Blue line = Wigner simulation, black line = Wigner + local
oscillator noise, red dots = GPE, error bars are measured
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SUMMARY

Phase-space representation methods have many applications

Wigner phase-space is relatively simple!
Maps quantum field evolution into a stochastic equation
Can also be used to treat interferometry
Advantage: No exponential complexity issues!
Mathematical challenge:

truncation error needs to be checked
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