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Dirac’s objection to Wigner-Moyal phase-space

Moyal showed how to calculate time-evolution!
Moyal brackets map quantum operators to differential
equations
Correspondence with Dirac - who prevented publication!
Now widely used in many areas of physics and elsewhere

Dirac’s criticism: probabilities can’t have negative values



Classical phase-space time-evolution



Wigner distribution of number states- a:N=0, b:N=1, c:N=5



Feynman’s ‘Simulating Physics with Computers’



Feynman’s argument

Can quantum systems be probabilistically simulated by a classical
computer?

‘In other words a computer which will give the same
probabilities as the quantum system does.’
‘If you take the computer to be the classical kind and
there’s no changes in any laws, and there’s no
hocus-pocus, the answer is certainly, No!’
‘This is called the hidden variable problem: it is impossible to
represent the results of quantum mechanics with a classical
universal device.’
Feyman then proposed the quantum computer!



2012: IBM 3 qubit superconducting quantum computer



Is three qubits enough for simulations?

Quantum many-body problems are large even in qubits!

consider N particles distributed among M modes
take N 'M ' 500,000:
Number of quantum states: Ns = 22N = 21,000,000

This is equivalent to one million qubits
Up to a billion qubits with error-correction!
How BIG is your quantum computer?



How can we overcome Feynman’s argument?

We can simulate correlations, not observations!

A computer can calculate correlations any way we like
We only have to generate predictions

Suppose
〈
Ĵθ

A Ĵθ

B

〉
Q

= C +
∫

Jθ

AJθ

BP
(
~J
)

d~J

Jθ

A is a real or complex variable, C is an offset
It doesn’t matter if a cat is black or white, so long as it
catches mice! (Deng Xiaoping)
It doesn’t matter if a computer is quantum or classical,
so long as it calculates measurements!



Husimi’s Q-function

Husimi’s Q-function is a positive phase-space method!

consider coherent states |ααα〉 of M modes

Define Q (ααα) = 〈ααα| ρ̂ |ααα〉/πM

Quantum correlations:
〈
â†
AâB

〉
Q

=−δAB +
∫

α∗AαBQ (ααα)dMααα

Problem - time-evolution is not easily computed

Exercise 1: show that for an N-boson number state,

Q (α) ∝ |α|2N exp
(
−|α|2

)



Can we represent a Bell state?



Wolf prize-winners: Wu (1978) and Aspect (2010)



Q-function with Bell inequality!

What is the Q-function of a Bell state?

consider typical 4-mode Bell state of photons or atoms:

Define
|Ψ〉= 1√

2

[
|1〉a+ |0〉a− |1〉b+ |0〉b−+ |0〉a+ |1〉a− |0〉b+ |1〉b−

]
Q (ααα) = |〈ααα|Ψ〉|2 /πM

QB (ααα) ∝

[
|α+|2 |β+|2 + |α−|2 |β−|2

]
exp
(
−|ααα|2

)
Exercise 2: Show that for the Bell inequality, one obtains B = 2

√
2

using the Q-function



Glauber’s P-function

2005 Nobel Prize in Physics

one half to Roy J. Glauber
for his contribution to the
quantum theory of
optical coherence

one half to Ted Haensch and
Jan Hall

for their contributions to
the
development of laser-based
precision spectroscopy



Glauber and Sudarshan’s P-function

Glauber’s P-function is a normally-ordered phase-space method!

consider coherent states |ααα〉 of M modes

Define P (ααα) implicitly:
ρ̂ =

∫
P (ααα) |ααα〉〈ααα|dMααα

Quantum correlations:
〈
â†
AâB

〉
P

=
∫

α∗AαBP (ααα)dMααα

All correlations can be calculated IF P (ααα) exists
Problem: P (ααα) highly singular for nonclassical states



First-principle simulations

What do we do with modes having low occupation numbers?

Truncated Wigner only works if all modes are heavily occupied
P-function is singular for nonclassical states
Q-function exists, but has no simple time-evolution
How about modeling other cases with low occupations:

the formation of a BEC must start with low occupation!
collisions that generate atoms in initially empty modes
coupling to thermal modes having low occupation?

We need a technique without the large N approximation



+P PHASE-SPACE METHODS

The positive P-representation is an expansion in coherent state
projectors

ρ̂ =
∫

P(ααα,βββ )Λ̂(ααα,βββ )d2M
αααd2M

βββ

Λ̂(ααα,βββ ) =
|ααα〉
〈
βββ
∗∣∣〈

βββ
∗∣∣ |ααα〉

Enlarged phase-space allows positive probabilities!

Maps quantum states into 4M real coordinates:
ααα,βββ = p+ ix,p′+ ix′

Double the size of a classical phase-space
Exact mappings even for low occupations
Advantage: Can represent entangled states
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+P Existence Theorem

For ANY density matrix, a positive P-function always exists

P(ααα,βββ ) =
1

(2π)2M e−|ααα−βββ
∗|2/4

〈
ααα + βββ

∗

2

∣∣∣∣ ρ̂ ∣∣∣∣ααα + βββ
∗

2

〉
∝ e−|ααα−βββ

∗|2/4Q
(

ααα + βββ
∗

2

)

Enlarged phase-space allows positive probabilities!

Advantage: Probabilistic sampling is possible
Problem: Non-uniqueness allows sampling error to grows with
time (chaotic)
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Operator identities

Differentiating the projection operator gives the following identities

â†
nρ̂ →

[
βn−

∂

∂αn

]
P

ânρ̂ → αnP

ρ̂ ân →
[

αn−
∂

∂βn

]
P

ρ̂ â†
n → βnP

Since the projector is an analytic function of both αn and βn, we
can obtain alternate identities by replacing ∂/∂α by either ∂/∂αx
or ∂/i∂αy . This equivalence allows a positive-definite diffusion to
be obtained, with stochastic evolution.



Measurements

How do we calculate an operator expectation value

There is a correspondence between the moments of the
distribution, and the normally ordered operator products.
These come from the fact that coherent states are eigenstates
of the annihilation operator

Using Tr
[
Λ̂(ααα,βββ )

]
= 1:

〈â†
m · · · ân〉=

∫ ∫
P(ααα,βββ )[βm · · ·αn]d2M

ααα d2M
βββ .

Exercise 3: Derive the moment correspondences from the definition
of the positive P-function



Example: time-evolution of harmonic oscillator

Consider the harmonic oscillator

Ĥ= h̄ω â†â
∂ ρ̂

∂ t
=−iω

[
â†âρ̂− ρ̂ â†â

]
Operator mappings

â†âρ̂ →
[
β − ∂

∂α

]
αP

ρ̂ â†â→
[
α− ∂

∂β

]
βP

∂P
∂ t

= iω
(

∂

∂α
α− ∂

∂β
β

)
P
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Harmonic oscillator solution

General result for harmonic oscillator

∂P
∂ t

= iω
(

∂

∂α
α− ∂

∂β
β

)
P

Solution by method of characteristics, for initial delta function

dα

dt
=−iωα =⇒ α(t) = α(0)e−iωt

P(α, t) = δ (α−α(t))

Exercise 4: Prove that the characteristic function is the solution



General case

Suppose we have a more general Hamiltonian, like the BEC case.
Then we define

−→
α = (ααα,βββ )

and find using operator mappings that - provided the distribution is
sufficiently bounded at infinity:

∂

∂ t
P(t,−→α ) =

[
∂iAi (

−→
α ) +

1
2

∂i∂jDij(t,
−→
α )

]
P(t,−→α ) .

Comparison of positive-P and Wigner

No other terms in +P - higher order derivatives all vanish
Nonlinear couplings cause noise, linear damping does not



SUMMARY

Nonclassical phase-space representation methods are useful

+P phase-space is relatively simple!

Maps quantum field evolution to a stochastic equation
Can be used to treat complex systems in 3D
Advantages: No truncation, no exponential complexity issues!
Mathematical challenge:

sampling error increases in time
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