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Dirac’s objection to Wigner-Moyal phase-space

Moyal showed how to calculate time-evolution!

m Moyal brackets map quantum operators to differential
equations

m Correspondence with Dirac - who prevented publication!
m Now widely used in many areas of physics and elsewhere

Dirac’s criticism: probabilities can’t have negative values



Classical phase-space time-evolution
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Wigner distribution of number states- a:N=0, b:N=1, c:N=5




Feynman's ‘Simulating Physics with Computers’

Simulating Physics with Computers
Richard P. Feynman
Degursment of Physics, Colifornte lestinwe of Techmology, Paradesa, Califorwia 91107

Recnived May 7, 1981

L INTRODUCTION

On the program it says this is a keynote speech—and | don't know
whit & keynote speech is, | do not intend in any way to suggest what should
be in this meeting a5 a keynole of the subjects or anything like that 1 have
my own things to say and 1o talk about and there's no implication that
anybody needs to talk about the same thing or anything kike it. So what 1
want 1o talk about is what Mike Dertouzos suggested that nobody would
talk about, | want 1o talk about the problem of simulating physics with
computers and | mean that in a specific way which | am gaing 1o explain.




Feynman's argument

Can quantum systems be probabilistically simulated by a classical
computer?

m ‘In other words a computer which will give the same
probabilities as the quantum system does.’

m ‘If you take the computer to be the classical kind and
there’'s no changes in any laws, and there’s no
hocus-pocus, the answer is certainly, No!’

m ‘This is called the hidden variable problem: it is impossible to
represent the results of quantum mechanics with a classical
universal device.’

m Feyman then proposed the quantum computer!



2012: IBM 3 qubit superconducting quantum computer




Is three qubits enough for simulations?

Quantum many-body problems are large even in qubits!

m consider N particles distributed among M modes
m take N ~ M ~ 500, 000:

m Number of quantum states: N = 22NV = 21,000,000
m This is equivalent to one million qubits

m Up to a billion qubits with error-correction!
m

How BIG is your quantum computer?



How can we overcome Feynman's argument?

We can simulate correlations, not observations!

m A computer can calculate correlations any way we like
m We only have to generate predictions

m Suppose <.A123§>Q =C+[J§JEP <j> dJ

m J§ is a real or complex variable, C is an offset

m It doesn’t matter if a cat is black or white, so long as it

catches mice! (Deng Xiaoping)

m It doesn’t matter if a computer is quantum or classical,
so long as it calculates measurements!



Husimi's Q-function

Husimi's Q-function is a positive phase-space method!

m consider coherent states |a) of M modes
m Define Q(a) = (a|p|a) /7M
m Quantum correlations: <QL§B>Q =-8ag+ [yo5Q(a)dVa

m Problem - time-evolution is not easily computed

Exercise 1: show that for an N-boson number state,

Q(a) < o/ exp (~[af’)



Can we represent a Bell state?
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Wolf prize-winners: Wu (1978) and Aspect (2010)




Q-function with Bell inequality!

What is the Q-function of a Bell state?

m consider typical 4-mode Bell state of photons or atoms:

m Define

W) = 75 (1124 10), (154 10} +10) 5 [1),_ 100 1), ]
= Q(a) = [(a| W)|* /"

Qs (@) o [Joe[* B+ >+ |- P B exp (~|el?)

Exercise 2: Show that for the Bell inequality, one obtains B = 21/2
using the Q-function



Glauber's P-function

2005 Nobel Prize in Physics
m one half to Roy J. Glauber

m for his contribution to the
quantum theory of
optical coherence

m one half to Ted Haensch and
Jan Hall

m for their contributions to
the
development of laser-based
precision spectroscopy




Glauber and Sudarshan's P-function

Glauber's P-function is a normally-ordered phase-space method!

m consider coherent states |@) of M modes

m Define P(a) implicitly:

p=/P(a)a)ald"a

Quantum correlations: <§£§B>P = [oosP(a)dVa
All correlations can be calculated IF P (@) exists
Problem: P (e) highly singular for nonclassical states



First-principle simulations

What do we do with modes having low occupation numbers?

m Truncated Wigner only works if all modes are heavily occupied

m P-function is singular for nonclassical states
m Q-function exists, but has no simple time-evolution
m How about modeling other cases with low occupations:

m the formation of a BEC must start with low occupation!
m collisions that generate atoms in initially empty modes
m coupling to thermal modes having low occupation?

m We need a technique without the large N approximation



+P PHASE-SPACE METHODS

The positive P-representation is an expansion in coherent state
projectors




+P PHASE-SPACE METHODS

The positive P-representation is an expansion in coherent state
projectors

p= [ P(a.B)N(.B)  ac?B
ey (B
N@-B) = 15 ja)

Enlarged phase-space allows positive probabilities!

m Maps quantum states into 4M real coordinates:
a,p=p+ix,p’ +ix
m Double the size of a classical phase-space

m Exact mappings even for low occupations



+P Existence Theorem

For ANY density matrix, a positive P-function always exists

~
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+P Existence Theorem

For ANY density matrix, a positive P-function always exists

Pl ) = e o8 e (A5E |5 | 22 )

o e“a_ﬁ*‘z/w (a+ﬁ*>
2

Enlarged phase-space allows positive probabilities!

m Advantage: Probabilistic sampling is possible

m Problem: Non-uniqueness allows sampling error to grows with
time (chaotic)



Operator identities

Differentiating the projection operator gives the following identities

s 0

aljp — [ﬁn - a_oc,,} P

app — apP

pa, — [an — i} P
9Bn

pa, — PBaP

Since the projector is an analytic function of both a, and B,, we
can obtain alternate identities by replacing d/da by either d/d oy
or d/iday,. This equivalence allows a positive-definite diffusion to
be obtained, with stochastic evolution.



Measurements

How do we calculate an operator expectation value

m There is a correspondence between the moments of the
distribution, and the normally ordered operator products.

m These come from the fact that coherent states are eigenstates
of the annihilation operator

m Using Tr [K(a,ﬁ)] =
@30 = [ [ P(@.B)Bn-+- ol Mard?MB.

Exercise 3: Derive the moment correspondences from the definition
of the positive P-function



Example: time-evolution of harmonic oscillator

Consider the harmonic oscillator




Example: time-evolution of harmonic oscillator

Consider the harmonic oscillator




Harmonic oscillator solution

General result for harmonic oscillator

B Pla,t)=6(a—a(t))

Exercise 4: Prove that the characteristic function is the solution



General case

Suppose we have a more general Hamiltonian, like the BEC case.
Then we define

o =(a,B)

and find using operator mappings that - provided the distribution is
sufficiently bounded at infinity:

aatP(tjﬁ) = [3;A,-(3)+;8,-8J-D,-j(t,ﬁ)] P(t,ﬁ).

Comparison of positive-P and Wigner

m No other terms in +P - higher order derivatives all vanish

m Nonlinear couplings cause noise, linear damping does not



SUMMARY

Nonclassical phase-space representation methods are useful



SUMMARY

Nonclassical phase-space representation methods are useful
+P phase-space is relatively simple!

m Maps quantum field evolution to a stochastic equation

m Can be used to treat complex systems in 3D

m Advantages: No truncation, no exponential complexity issues!
m Mathematical challenge:

m sampling error increases in time
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