Introduction to quantum field theory for
ultra-cold atoms
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Revision: Basic postulates of Quantum
mechanics:

(1) The system is represented by a quantum state |¥(t))
(2) Observables quantities are represented by Hermitian operators.

(3) If you make a measurement of an observable, you are certain to get one of
the eigenvalues of that operator.

(4) The probability of getting this value is equal to the mod-square of the
projection of the state along that corresponding eigenstate.

Q|¢n> = )‘n|¢n>
= P(\) = [eal® = [(6n]Wn (1))
[T(1) = cnlt)|én)

n

outline: nothing is certain

- QM with many particles

- 2nd quantisation Lecture 1
- ultra-cold atoms

- scattering

- mean field theory

Lecture 2
- Quantisation of the EM field
- Interaction of atoms and light
- Fun examples
- the atom laser —

- atom interferometry

Clicker question:

When we describe this system quantum mechanically, in general, the wavefunc-
tion for the system W(rq,r2) will be of the form:

(a) f(r1) +g(r2) (f) None of the above
(b) f(r1)g(rz)

() 22, bfi(r1) 22 crgr(ra)
(d) 225 225 cjfi(r1)gn(r2)
(e) X2 fi(r1 x12)




Many-body Quantum Mechanics

U(ry,re, ..., t) = 1(r1, 0)he(ra, t) . Y (ra, t)

(special case where there is absolutely no entanglement between
the particles, and they stay that way)

\Il(rlv T2y, Tn; t) = Z Z T Z Cjr,j2;.. jn(t)w]d (Tl)'lpjz (T2) s wjn (Tn)

Jj1 - J2 Jn

(The unfortunate reality)

Identical particles:

Define exchange operator:

15”\1/(7"1,...,T'i,...,rj,...r,,,) =U(r1, ey ey Ty Th)

If particles are indistinguishable, then physics can’t change by swapping two particles around, so:

~

PjVU(ry,ro,...,1m,) = eid’\If(rl,rg, ceeyTh)

And, obviously: Pfj\IJ(Th ces ) =W(ry, T

So,two choices: P ;W (ry,...,7,) = £U(r,...,75)
We call ‘+’ case ‘bosons’ and ‘-’ case ‘fermions’

Spin statistics theorem (from relativistic QM) says particles with:
integer spin are bosons, half integer spin are fermions.

Identical (indistinguishable) particles:

What does it mean for particles o be indistinguishable?

Eg:
Bosons:

V(ry,re) = %(¢1(T1)¢2(T2) +v2(r1)1(r2))

Fermions:
‘Ij(rlﬂb) = %(7/11(7"1)1/12(7“2) - 1/’2(7“1)7111(7"2))




Eg:
Bosons:

W(rr,ra) = G (W )a(ra) + a (i (r2))

=U1(r)Ya(r2) —— BEC!

Fermions: .
U(ri,ma) = 5 (W1(r)ea(rz2) — ¢a () (r2))
=0

Unphysical —> Pauli exclusion principle: No two fermions can
have the same quantum numbers

> Chemistry

Rf|Db| Sg Bh|Hs

Fermions:

- Electrons (atomic structure, metals, semi-
conductors)

- protons, neutrons, quarks, leptons

- in general, matter is made of fermions

Bosons:

- Photons

- ‘Force carriers’ (photon is the force carrier for EM force, Gluons for the
strong force, W+ etc for the week force. Higgs boson. Gravitons?)

- Collections of fermionic particles can behave like bosons, eg: atoms with
an even number of neutrons, quasi-particles (eg, phonons, cooper pairs).
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Clicker Question:

Is this state symmetric?

\Ij(rl,TQ, e ,T‘n,t) = ¢1(T1,t)¢2(T2,t) e wn(Tn, t)

(1) Yes
(2) No

(3) it depends.

11
N Identical Bosons:
Symeterized version of this state:
\I}(r17 Tr2,... 7Tn7t) = @[)1(7"17t)¢2(7'27t) e wn(/’ﬂnv t)
. 1
Is: \I](,r177,.2’.“’74n’t) = E(wl(rlat)d]Q(TZat) wn(rnat)
o (r, )1 (r2, 1) ... n(rn,t)
+ (11, £)P1(r2, 1) .. ¢2(Tn,75)
+all other permutatlons)
12




Easier way: 2nd quantisation
(sometimes called quantum field theory)

Define basis ket

N!

Ini,ng,...,nk) = ST E—
nilng! .. ny!

<¢1~~¢1¢2~~7/12~~¢k~~¢k
—_—

nitimes natimes nitimes

IR T VAT 1 S 1S (/M 7%
N—— N——

njtimes ns—1ltimes nitimes

+all other permutations)

13
’n17n2) <o ,7’Lk>
e is called a ‘Fock state’ or ‘number state’
e has ny atoms in mode 1, ny atoms in mode 2 etc.
e General state is then:
o0 o0 o)
I‘II> = Z Z e Z C’ﬂl”ﬂz,m,nk (t)|n17 n2,..., nk:>
n1=0n2=0 nE=0
14

Examples:

% (oth1 4+ n2) =

1
75 ¢

Y1y =

Y192tP3 + P11)stha + o113 4 Y3h1te + Yarbsihr + PYarhar)y)

15

Other useful properties:

Orthogonal:

! ! !
(n1,ma, .. nglng, ny, ... ng) = 6711.71; 6nz,n’2 . "snknﬂ¢

We call:
0,0,0,...,0)

The vacuum ket

16




e Imagine N particles. Classically, you’d need to know the position and mo-
mentum of each particle. Thats 6N numbers.

Quantum:
0 0o )
|\I]> = Z Z Cnhnmm,nk(t”nlvn%"'7nk>
n1=0n2=0 nE=0

o N* complex numbers needed to describe N particles in & modes!

e For 10° particles in 100 modes, thats (10%)190 = 10600

Clicker Question:

Can all superposition of Fock states [¥) = 325 _( 37 =327 _ Cny ny.oiny (8) 01,102, -1k
be represented as a many-body wavefunctions ¥(ry,ra, ..., 7,

-Yes
- No

- Not enough info.

17
Clicker Question:

Can all many-body wavefunctions ¥ (rq,72,...,7,) be represented as a superpo-
sition of Fock states [) = "0 (> (-3 _( Coyns.ony (B) 101,12, - 1) ?

- Yes

- No

- Not enough info.

18

Example:

0,30)+-/0,12)+ &

1 3,0,1>
a
—_—t —
X; X, X

20
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Clicker Question:

o0 oo oo
1 =33 Y Cora Bl i)
n1:On2:0 ’ﬂk:O

Are the coeffecients (or mod squared of them |Cy, ny....n, |?) conserved?
(1) Yes
(2) No
(3) Depends

(4) In general, we can’t say

21

How do we calculate stuff with these states?

Eg:

o0 o0 o0
=3 S N Covnren )12, )
n1=0n2=0 n,=0

What is <x>?

22

Creation and annihilation operators:

dj|n1,...,nj,...>:,/nj|n1,...,nj—1,...>

d}|n1,...,nj,...>:\/nj-l—llnl,...,nj-i-l,...)

23
Number operators:
ataj|n n ) =njln n )
GGy ooy Mgy e e ) = T0g 1T, « e 5 Tlg,y
G ata
N; = a;a;
The Fock states are eigenstates of N; with eigenvalue 7.
Total number of particles is given by the operator N = 5 ; N, =Y ; d}&j

24




Some people use the creation operator as a way of generating the
number states:

And you can keep doing this:

1 . Tty .
) = G e @) e @00
L1+ 21 ... bj:

25

Clicker Question:

|¥) =13,0,12,17,0) What is (asal) ?

(@0
o) |
(92

® 12
@® 13
(h) 17

(i) not enough info

26

Fermions:
{ai, al} =6,

{A, B} = AB+ BA

{a;, a;} = {a} , al}

0

27

~tyn
al )"
0,...,n;,.. ,0>_(f) 0,...,0,...,0)
TLj!
Gja; + a0, =0 = a; =0
AtaT | ATaT ~t\2
aja; +aza; =0 = (a;)°=0

ensures you never get more than one fermion in each mode. Its
pretty easy to show:

atloy = [1) all) = 10)

afl1) =0 al0) =0

28




1st quantised representation: Expand in a basis

Hj = ;varﬁj 19)(g]

Hyg = (f|Hjlg)

=Y Hpglf)g
f g

H= ZZHfg\fJ (951420 D2 Veopgnleal ) o (hy)

u,j e f,g;h
\

Why do we end up with 2 projectors here?

31

need to be careful with the sign:
P aal = —ata.
a;a; = —a;a4 185 = et
aj|n1, ,nj, . >
= a;(a)™ (ag)" ... @)™ ...|0)
= (-7 @})m@f)... aaf)...10) Ji=mAnzt...nj
SO: dj\...nj > ( )JJ</nj|~- 1, > if n; = 1, 0 otherwise
d_}\ ..ny = n;j+1]...n;+1,...) if nj = 0, 0 otherwise
29
Dynamics:

Many body wavefunction obeys the Schrodinger equation

ih%\ll(/rl7’r27 e 7rn) - 7:[\11(7‘1,7’2, .. .,T’n)

H is just the sum of the Kinetic energy and external potential energys for the

individual particles, and the interparticle interactions

= ZH+ ZU ri —1;)

- Z (—v2 + Vea(r )) +%;U(m —r;)

30

2nd quantised representation of Hamiltonian

©,j e, f,g:h

H= ZZHfglfa (95420 D Uepgnled]fi)lail (b
J

Swap the order of the summation:

A=t > (Ial) + > Uefth(\ez il 1)
f.9 j e,f.g;h

A straightforward calculation with far far too many indices shows that operators in brackets
can be written very easily with our creation and annihilation operators:

H=> Hpgihig+ Y  Uesgnalatagan
19 e, f,9,h

32




2nd quantised representation of Hamiltonian:

H=> Hygalag+ Y  Uesgnalalagan
f.g e, f.g9;:h

Hy, = / 5 (0) Hpy ()

Ugon = [ [ 065U es = w21y ) e2) s

33

Even easier if you pick the right basis

(ie, ¥ 7 (r) are eigenstates of H)

H=> Eratas+ Y Uergnilhagan
f e7f7g7h

Hipy(r) = Epipy(r)

Vs = [ h / U e ) U (01 — )y (1) (r2) s rs

34

No interactions:
H=> Ejila;=> E;N,
j j

quantum optics, for example

35
The field operator:
d(r) =3 djus(r)
9 =Y alu; )
[0(r), $T()] = o(r - )
[0), )] = [ ), d1a] =0
36




Fermions
p(r) = ajuy(r)
j

P =Y alum)

37

From now on, assume i'm talking about
bosons, unless I specifically say
otherwise. But it all generalises to
fermions in a fairly obvious way

38

H=Y"H,,al, Hy = [ i) fu ) dr
i o
= ZZ/ uy (r)Hu;(r) d3rd:-r&j

oo
— ot 3 7, _ A
| i a B(r) =D dju(r)
J
39
Hamiltonian:
A= [ B e [ [T i e - )ieie) drd
This same process actually works for any one-body operator. Eg, the position operator
that operators on our many-body state is now:
o0 ~ ~
i= [ i d
— o0
So the ‘average’ position of all our particles is
00
S\ 7 N 3
@) =l [ 3 wpede) dw)
—o0
40




Number operator

v- [ T ) dr

Expectation value of the density:

41

Clicker Question:

At t=0, we have n particles in the ground state of an infinite square well. ie
) = |N,0,0,...,0)

We then instantaneously turn our potential into a harmonic oscillator. If we measured
the variance of the number of particles in the (new) ground state, what would we find?

(10
(2) something nonzero

(3) not enough info

42

Say our state is |\I/> = |N,0,0, ce ,0>

How do we change basis?

43
Say our state is |\I/> = |N, 0,0,... ,0>
How do we change basis?
In general, our states in the new basis will look something like
‘\Il> - E Cnl,ng,‘..,nk n17n27""nk>
N1,N2,...,Mk
So we'll need some HUGE matrix to transform all the coeffecients!
44




Just change the basis of your operator!

Easier way:

|¥) = |N,0,0,...,0)

h(r) = Z aju;(r)

lA)Z' = Z Aij&j
J

= Zéjvj (r)

oo
Ay :/ o (r)uy(r) d’r

— 00
45
Example:
) = [No, N1,0,...,0)  (r) =) au;(r) = bjuy(r)
J I J I
number of
particles initially square well basis H.O basi
in ground state of states - basis states
square well
Whats the expectation
number of particles in the At At
ground state of the <a$a0> = <N0,N1,0,...|a$a0|NO,N1707__,> Ny
SQUARE WELL’
(easy)
46

Example:

@) = [No, N1,0,...,0)  (r) = aju;(r) =D bjuj(r)
J

number of

articles initiall, square well basis .
P y q H. O. basis states
in ground state of states

harmonic trap

(Bobo) = (3> A jAvsala;)

Whats the expectation g

number of particles in the

ground state of the = Z Z AS,jAO,i<N07 Nl, 0... ‘(AII(AIAN(), Nl, 07 oo )
HARMONIC TRAP! i g

= |Aoo[>(@dao) + | Ao1[*(alar)

= [Ago|*No + |Ao1|* N1

47

Works for continuous basis too:
Eg: Momentum space operator

systems (ie, no potential)

(;As(k) = /L/A)(I')B_ik.r d3r Best basis for homogenous

Best basis for strongly

/ (Zg(k) eik'r d3 k interacting systems

(because the interparticle
interactions are diagonal)

48




Dynamics: how does the system evolve?
Schrodinger picture:

d .
—|U) =H|V
h W) = H|w)

(r — ' )d(r)g(r') dPr dPr’

H= / ot () Ho(r) d3r+/ / Of (o)t

49

Equivalent set of equations:

m%w) =ihy >y %cmm,,,m(t)|nl,nQ,...,nk>

n1=0n2=0 nE=0
=) S o
=H § E § Cnl,nz,.“.nk(t”nlan27"':nk‘>
n1=0n2=0 nE=0
d o0 oo o
ih%le,mz,...,mk(t) = § § § n1 na,. 7n17m27~--7mk‘H‘n17n2u~-
n1=0n2=0 =0

(Equivalent to a giant matrix/vector equation. Can be
useful in some simple situations, but is usually too yuk to
contemplate, even with a giant computer)

50

Heisenberg Picture:
ih=-b(x) = [$(x), A

(r —)(r)(r') dPrd’r’

i ite) = 1) + ([ 00 - a0 @) b

The Schrodinger equation is meant to be linear, why is this nonlinear?

51
Clicker Question:
To calculate the dynamics of some observable, as well
as solving the Heisenberg Equation of motion
for 4(r,t),we also need...
(a) The initial quantum state | ¥/(0))
(b) The initial condition of %) (r, 0)
(c) The quantum state for all time [P (1))
(d) All of the above
(e) none of the above
52




oo

B — )i d) b(r)

- Tells you everything about the dynamics of the system

- Be careful though: Looks like the schrodinger equation,
but it is an OPERATOR equation.

- Still need the state |¥) in order to calculate anything.
- Technically, should be equally hard as solving the (many

body) schrodinger equation, but there are several useful
approximate methods based around this equation.

53

Example physical system:

Bose-Einstein condensation (BEC) in dilute atomic gas

54

So what is a BEC?

Standard tea-

Foom answer: — “Macroscopic occupation of a single quantum state

Aren’t all collections of atoms in a single quantum state? |‘I/>

— Yes, but not necessarily with a large number in
some single particle basis mode

oo o] e}
) =D > D Covmeei (Bl iz, )
n1=0n2=0 nE=0

— Cooling a collection of particles approaches BEC

55

It's a bunch of fermions, how come we
can treat it as a boson?

56




Distinguishable particles:

Identical fermions:

Identical bosons:

Statistical mechanics:

n(e) = 67’5;#)

Maxwell-Botsmann distribution

Fermi-Dirac distribution

Bose-Einstein distribution

57

Interatomic interaction:

—o0

He /Z O (r) Hip(r) dr + % /: / T 9@ U - ¥)d ) e

What is U(r — r’)

Fermions:

Bosons:

Low temperatures:

<0 > kT

T#0K

0.5

; 0.941(w,0,0N)*
. .

= 300nK

58

59
Can we make this easier to deal with?
B
76
Short answer:
We can replace it with U(r —r’) = Upd(r)
60




More quantitative reasoning:

The effective range of the potential is short compared to the average inter-
particle separation ( 3/%)
n(r

So we are only interested in the effects on the wavefunction at long range.

61

What's the reflection coeffecient in this case?

@) |
(b) 0

(c) 0.5

(d) not enough info

U(r—r") = Uyd(r)

How do we calculate the constant, Uo?

_—
Revision: Scattering
1/) theory.
out
- Calculate the incoming
and outgoing wave.
D ¢in - Use boundary

conditions to calculate T
and R coeffecients.

62

63
Lets look at the incident and reflected waves at large r
win = 6_ikT
‘—
_—
wout = eik(T—i—&)
64




What effect does this phase shift have?

w = win + wout

cikr 4 g—ik(r+0)

= cos(kr) + isin(kr) + cos(k(r + 0)) — isin(k(r + 9))

JAVAVAVAVAVAVAVAVAN

65

Effective potential

67

Effective potential

66

Slightly more precisely: 3D

ezkr

¢m = eikz Yout = R(T)lem(G,(ﬁ) ~ .

Calculate the phase shift between 1);, and 1, in the limit & — 0

Replace U(r) with a hard sphere potential of cross-sectional area
_ 4l52 = d7a?
0 =356°=4nma

Even easier:

Replace U(r) with U(r) = 4mh2a5(y)

a is called the scattering length, and is a parameter which is easy to pull out of
atomic scattering experiments.

68




Some length scales: Equation of motion for the field operator:
A= [ e drr D[ @d i)
. . —~10 — 00 2 — 0
Atomic size: ~apg ~ 10 m
Scattering length: ~ 100ag ~ 1078 m ihdilﬁ(r) — [¢(r) 7 ’H]
t
Mean atomic separation: ~ g~ 1077 m l
Ld o~ P TN VR
De-Broine wavelength: = size of the condensate ~ 1 mm Zhaﬂ)(r) = H¢(P) + quvb (P)¢(r)¢(r)
[} (]
s ° There are a few things you can calculate with this without
° ° too much trouble, but I'll leave that for other people to
° ° talk about.
(]
[}
69
Back to BEC: Major classes of Approximations:

Hard to solve, so lets look for some approximations:
R oo N i 1 oo oo N R R
H = / Pt () H(r) & + 5 / / )t (U (= v)d(r)d(r) dPrd®r

O Uy [ e Quantum field theory calculations are hard

— [t eer D[ [ i s - 2deie) drd B
—o0 2 JoxJoso Approximations ignore either:

— Complexity in the quantum state of each mode
oo A U oo R . .

= [t ¢ [ @i e ¢  The number of modes

— Systems with strong interactions

Yay! looks a fair bit nicer

70




The 'mean field' approximation

- Say we don’t care about the correlations, we just care about things
like the mean density.

- then all we really are about is <¢T (r)qﬁ(r»

- What we are throwing away: the details about
the number statistics in each mode.

- What we are keeping: The mean of the
number in each mode, and enough phase to keep track
of the dynamics

- Pretty useful, describes most BEC experiments fairly well.

73

The GPE

m%wr) = P 9r) + V() + UL )

2m

Easy to solve because 1) is just a single complex function

Looks a lot like the single particle Schrodinger equation, except for the nonlinear
bit.

BE CAREFUL: 9 looks like a wavefunction, but it is not a quantum state in
the true sense. The evolution looks familiar, but the rules of QM such as borns
statistical interpretation certainly don’t apply.

The nonlinear bit makes the evolution a bit trickier than you are used to. eg:
principle of superposition no longer holds.

The 'mean field' approximation

Assume the quantum state |¥) is such that (¢ (r)d(r)) ~ (1 (@) (D (r))

Then we can calculate everything we want with (¢ (r))

| =

Evolution: A

<9

t
~ H((r)) + U (41 (1)) (i (x)) (4(x))

Cleaning up the notation a little by calling ¢ (r) = (¢(r)), we arive at the
Gross-Pitaevskii Equation (GPE):

i ab(r) = ST (r) + V(ER(e) + Uli(r) ()

2m

74

75
Clicker Question:
|@) = [N,0,...). What is (1))?
(1) o
(2) N
(3) V/Nug(r), where ug is the appropriate mode function
(4) can’t say
76




So how do we justify this seemingly meaningless

approximation?

Answer: assume a different state

_lal? > a0

n0=0
It’s not too hard to show ag|a) = o)

Expand your field operator as (r, t) = > ajuy(r,t)

Then 9 (r, 1) = ({(r,)) = (U] 3, a;u;(r)| V) = aug(r, )

77
Would also work if we chose a more complicated state:
|¥) = lag) @ [a1) @ |az) @ ... o)
in that case, (¢) = >_, aju;(r,t)
it’s easy to show that this object obeys the same equation of motion.
78

Problems with this approximation:

This state means that this step is completley valid at t=0, but the nonlinear bit
ensures that at later times, our state WONT look like this anymore, so it
becomes an approximation again.

We have explicitly assumed that there is an uncertain number of particles, yet
the mean field wavefunction says there is zero uncertainty in the number of
particles.

Lets look at some useful things it can tell us:

79

What can we do with the GPE?

2
P _(_ 7

PR 2 2
o o V2 + V(%) + Uppx)| | 9(x)

Can’t be right all the time, but it’s surprisingly useful

* Spatial behaviour of BEC undergoing only linear processes
- Evolution in any external potential (including time dependent)
- Coupling between different internal states
- Can be used to describe weak BEC excitations, BEC manipulation
with optical or magnetic potentials, coupling between internal
states, atom lasers, vortices, solitons, wave-guiding, feedback, ...

80




Quantisation of the EM field:

Motivation: There are situations in quantum-
atom optics where the quantum state of the
EM field matter’s when interacting with
atoms

81

Quantisation of the electromagnetic field:

Quick and dirty version

V-E=0
V-B=0
VxE=_-28

ot
OE
VxB= ,U'OGOW

—_— H =

D=

f <€0E2 + i32> d’r

82

Simple solution to maxwells equations:

E(z,t) = Ex(z,t)%x = q(t) sin(kz)X

VxB= Moﬁo%—}f ——  By(z,t) = 12q(t) cos(kz)

H = %f (€0E2 + ﬁBz> d3r

83
Going from a classical field to a quantum field
Classical:
g and p (and hence E and B) are some numbers that describe the amplitude of
the electric and magnetic field.
Quantum:
G and p (and hence E and B) are some operators that operate on some quantum
state |U) to describe the amplitude of the electric and magnetic field.
84




Classical: Quantum

4,7 =0 —

Change variables (again): a o< é —+ 7,]3 [d &T] =1

H=b) (0B + 5B dr —— ﬁ:m<a+a+1)

That was assuming just a simple
single-mode plane wave. Add in all
the modes:

85

Electric field operator

E(I‘, t) = Z €€k (dkeik'r + &Leiik'r)
k

E(r,t) = —ieocz k x €& <&keik.r _ &Le_,-k,r)
k
hw
£ = F
60V

. . . 1
H=1] (60E2+71032) dBr = Z}-Mj (a}@j +2>
j

86

Clicker Question:

BE(r,t) = Z [SR% (ﬁrkﬁlk‘r + dle’“"r) B(r,t) = —iso(:Zk X é1:Ex (&ka"k" - &ﬁe’“‘")

k k

Are E and B observable quantities?

(1) Yes, they both are

(2) No, neither of them is
(3) Eis but Bisn’t

(4) Bis but E isn’t

(5) not enough info

Clicker Question:

BE(r,t) = Z i (&kﬁ'k'r + &Le’ik'r) B(r,t) = —iEOCZk X €k (&kelk'r —a
k

k

Are E and B Compatible Observables?

(1) Yes
(2) No

(3) Not enough info




Mass on a spring:

Classical:

Quantum:

T X
JAVAVAVAVAVAVAVAVAN | (A ATAAAAAA A
| t
2(t) o a(t) + a*(t) 2(t) oca(t) +al(t)
89
Electric field
Classical: Quantum:
E E
AN | MANNVVWVW
| t
E(t) o a(t) + a* (t) E(t) oc a(t) +af(t)
Im(a)

90

E(I‘7 t) = Z k€ (&keik-r + @Leiik'r)
k

Exercise:

Calculate the electric field for a single mode with
100 photons in it

91

Moral: a Fock state isn't a good
approximation to a classical EM wave with
well defined amplitude and phase.

So what state is?

92




Coherent state

Quantum:

It’s the state generated when ~
you couple a classical current
to the EM vacuum

eigenstate of the annihilation
operator:

ala) = ala)

93

Revision: Dipole moment of a
single 2-level atom:

A

d=er
[4)
13)
12)
1)
W) =) " enln) ~ col0) + 1)
|0)

Atoms interacting with light

~

H= Hatoms + Hlight + Hatom—light

~ ~

Hatom—light =d-E

94

95
d=er =leri

= (10)(0] + [1)(1]) er (10){O + [1)(1])

= dio [1){0] + do1 [0) (1] d;; = (i|er[5)

=d(oy+o0_)
ok cool. Now what about many atoms?
Anamypoty = [ 9 (©)30() d*n
96




What does a general (many body) state look like?

Ey [1)
[0)
Nay =0 nuk:O np, =0 npy =0
97
Many-body dipole operator
Ey 1)
[0) .
1, annihilates a state |0) atom
1, annihilates a state |1) atom
A 0 o 0 L
dmanybody = / ’(/J:;(I‘)d’(/la(r) d’r +/ wg (I‘)d’(/Jb(I‘) d*r
—c0 —00
d=d(oy+0_)
~ 0 ~ ~ ~ ~
dmanybody = d/ (wg/(/}a + wlwb) d31‘
—o00

98

Atom-Field interaction

7:[ = ﬁatoms + ?:tlight + a : E

Br,) =Y ac (akefk'f + d}\(e’““')
k

a=a " (i ilin) o

—o0
ﬂatom—h‘ght = Zk Ik /;oooo (ﬁk’gﬁ'}glz)aeik-r + ak’d}qu;ieik-r + &Lu};qz)ae*ik-r + &L@Bb@@zg*ik.r) Br

l rotating wave approximation

ﬁatomflight = Zk gk fjooo (&k,&gtﬁaeik‘r + @Liﬁbi&le_ik'r) d3r

99
What about in momentum space?
Hatom—tignt = 9 [ o (akl,zz?,i(r)iﬁa(r)eiko-r + d]t‘)zl;b(r)l/;l(r)e‘iko‘r> &r
l
Hatom—tiant = 9 % (a3} (& + ko) Balk) + af, du(k + ko) 3 (K) ) dk®
100




Fun with atoms and light:

101

The atom laser

Excited state

weaq Jase| woie

n— N..

trapped (BEC) 13 |2)
untrapped
(atom laser beam)

Hatom—tight = g1 I (&165;(1( + k1)1 (k) + alds(k + kl)(ﬂﬂ‘)) dk®

92 J7%, (6] (k + ko) Ba(k) + adda(k + ka)dh(k) ) dic®

9192
A

Excited state

1)
Ground
state 1

e (ala;(&l(k)@(k ki — ko) + dnd] ok + ky — kz)&(k)) dK®

102

103
Quantum state transfer
)
104




Entangled atom laser beams:

source of
entangled
photons

Entangled atom
laser beams!

W) # [01) @ W)

105

H=927

®
2
o
3
9
1
4
o
@
B
3

106

107
10
5X T T T T
4+ BEC 1 BEC 2
ﬁ'E 3k atom laser pulse
=
£
2 2-
o
[s]
1+
L L
-1.5 -1 -0.5 0 0.5 15
x (mm)
108
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Atom Interferometry:

[ \ A [ (BB G RL + K — ko) + Dok + a — ko)d](K)) ak®

Atomic beam splitters

' 7 Mirror for atoms
Atomic Matter wave N

Atom counter
Rotation Q

110

111
aumm:<%>ﬂxA
Nl_NQ :g
Ao = Vot %ﬁd) 112




Research Projects with me:

- Quantum Enhanced atom interferometry
- Atom-light entanglement

- Tests of quantum gravity and decoherence

113

Other atom optics at UQ:

Theory: Experiment:
- Far from equilibrium - Precision measurement - BEC in ring-traps
quantum systems
- Atomic Physics - Atom interferometry
- Entanglement
- Open quantum systems - Quantum Simulators

- Fermions
- Quantum Optics

114

the end
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