Ultracold Atomic Fermi Gases

Xia-Ji Liu

CAOUS, Swinburne University

Hawthorn, June.

Outline

(1) BCS Mean Field Theory
(2) High Temperature Virial Expansion
(3) Spin-Orbit Coupled Ultracold Fermi Gases I

4 Spin-Orbit Coupled Ultracold Fermi Gases II

BCS Mean Field Theory

(1) Brief Review : Ultracold Fermi Gases
(2) Energy and Length Scales
(3) BCS Mean Field Theory
4) Solutions at BCS and BEC limit
(5) Application: Calculate Collective Modes

There are two kinds of particles in the world: fermion and bosons

Fermions: half-integral spin electrons, protons, neutrons, 2H, 6Li,... are forbidden by the Pauli exclusion principle to have more than two of the same type in the same state. They are the "loners" of the quantum world. If electrons were not
 fermions, we would not have chemistry. Fermion obey the rules of Fermi-Dirac statistics.

Bosons: integral spin photons, $1 \mathrm{H}, 7 \mathrm{Li}, 23 \mathrm{Na}, 87 \mathrm{Rb}$, 133Cs,... love to be in the same state. They are the joiners of the quantum world. If photons were not bosons, we would not have lasers. Bosons obey the rules of Bose-Einstein statistics.

Quantum statistics

Quantum statistics

Bose-Einstein distribution

$$
n(\varepsilon)=\frac{1}{e^{\beta(\varepsilon-\mu)}-1}
$$

For $\mathrm{T} \rightarrow 0: \quad \mu \rightarrow \varepsilon_{0} \quad$ (ground state energy)
macroscopic population of the ground state

Fermi-Dirac distribution

$$
n(\varepsilon)=\frac{1}{e^{\beta(\varepsilon-\mu)}+1} \quad \beta=\frac{1}{k_{B} T}
$$

$$
\begin{aligned}
& \text { For } \mathrm{T} \rightarrow 0: \quad \mu \rightarrow \varepsilon_{\mathrm{F}}: \quad \text { (fermi energy) } \\
& n(\varepsilon) \rightarrow \Theta(\varepsilon-\mu)= \begin{cases}1 & \text { for } \varepsilon<\mu \\
0 & \text { for } \varepsilon>\mu\end{cases}
\end{aligned}
$$

Quantum degeneracy

Velocity distributions

Superfluidity: Fermions

Interaction

Cooper pairs - BCS superfluidity

Bardeen-Cooper-Schieffer Superfluidity!
2012 is 55 th anniversary of BCS Theory

Interaction

Interactions are characterized by the s-wave scattering length,
$a>0$ repulsive, $a<0$ attractive
Large $|a| \rightarrow$ strong interactions

In an ultracold atomic gas, we can control a

BCS－BEC Crossover

BEC－BCS Crossover

BCS pairing crosses over to Bose－Einstein condensation of molecules with increasing U_{0} ：

Interaction strength tunable via Feshbach resonances

Experimental works

Global progress (experiment)

Global progress (theory)

1D exact solutions

Mean field
Large-N, ε-expansion, RG?

T-matrix approximation?	Tan relations!	Operator product expansion?		
2002	04	06	08	10
Quantum Monte Carlo?	Virial expansion			
	Few-body solutions			

Color: Black (tried, experienced), blue (to be tried), red
(interested)

Energy and Length Scales

Energy and Length Scales

Fermi Energy

$$
\begin{aligned}
& E_{F}=(6 N)^{1 / 3} \hbar \varpi \\
& \varpi=\left(\omega_{x} \omega_{y} \omega_{z}\right)^{1 / 3}
\end{aligned}
$$

Fermi Temperature

$$
T_{F}=E_{F} / k_{B}
$$

Characteristic Size

$$
R_{F}=\left(2 E_{F} / M \Phi^{2}\right)^{1 / 2}
$$

Characteristic Wave Number $k_{F}=\left(2 m E_{F} / \hbar^{2}\right)^{1 / 2}$

Pauli Exclusion Principle

Harmonic Trap: Fermi Energy

N Single Component Fermions in a 3D Harmonic Trap

Energy Level

Degeneracy

The Number of Atoms

Let's count

$$
E=\left(2 n_{r}+|l|+3 / 2\right) \hbar \omega \quad E_{F}=A \hbar \omega
$$

$$
2 l+1
$$

$$
N=\sum_{n_{r}=0}^{A / 2} \sum_{l=0}^{A-2 n_{n}}(2 l+1) \quad E_{F}=(6 N)^{1 / 3} \hbar \omega
$$

$$
=\sum_{n_{r}=0}^{A / 2}\left(1+3+5+\cdots 2\left(A-2 n_{r}\right)+1\right)
$$

$$
=\sum_{n_{r}=0}^{A / 2}\left(\left(A-2 n_{r}\right)+1\right)^{2}
$$

$$
=1+3^{2}+5^{2}+\cdots(A+1)^{2}
$$

$$
\cong \frac{A^{3}}{6}
$$

Density of State

The number of states per interval of energy

\cdots| $\begin{cases}\Delta \varepsilon & g(\varepsilon)=\frac{d n}{d \varepsilon} \\ \Delta n\end{cases}$ | |
| :--- | :--- |
| | $\varepsilon=A \hbar \omega$ $n \cong \frac{A^{3}}{6}$
 $g(\varepsilon)=\frac{\varepsilon^{2}}{2(\hbar \omega)^{3}}$ |

2D and 1D

N Single Component Fermions in a 2D Harmonic Trap

Energy Level

$$
\begin{aligned}
E & =(2 n+|m|+1) \hbar \omega \\
& N=\sum_{n=0}^{A / 2} 2(A-2 n) \\
& =4\left(1+2+3+\cdots \frac{A}{2}\right) \\
& =(A / 2+1) A \\
& \cong \frac{A^{2}}{2}
\end{aligned}
$$

$$
E_{F}=A \hbar \omega
$$

The Number of Atoms

$$
E_{F}=(2 N)^{1 / 2} \hbar \omega
$$

N Single Component Fermions in a 1D Harmonic Trap

Energy Level

$$
\begin{array}{ll}
E=(n+1 / 2) \hbar \omega & E_{F}=A \hbar \omega \\
N=\sum_{n=0}^{A} 1=A & E_{F}=N \hbar \omega
\end{array}
$$

Two-Component System

3D $\quad E_{F}=(3 N)^{1 / 3} \hbar \omega$

2D

$$
E_{F}=(N)^{1 / 2} \hbar \omega
$$

1D

$$
E_{F}=N / 2 \hbar \omega
$$

Homogeneous case: Fermi Energy

$$
\begin{aligned}
& \int d^{s} p d^{s} x / h^{s}=N \begin{cases}s=3 & k_{F}=\left(6 n \pi^{2}\right)^{1 / 3} \\
s=2 & k_{F}=(4 n \pi)^{1 / 2} \\
s=1 & k_{F}=n \pi\end{cases} \\
& \text { Two-Component System } \begin{cases}s=3 & k_{F}=\left(3 n \pi^{2}\right)^{1 / 3} \\
s=2 & k_{F}=(2 n \pi)^{1 / 2} \\
s=1 & k_{F}=n \pi / 2\end{cases}
\end{aligned}
$$

Theoretical History of Crossover: MF

- Eagles, Leggett noted that BCS T=0 wavefunction could be generalized to arbitrary attraction: a smooth BCS-BEC crossover !

$$
\Psi_{0}=\exp \left(N_{B}^{1 / 2} \sum_{k} \phi_{k} c_{k}^{+} c_{k}^{+}\right)|0\rangle \stackrel{v_{k}=\frac{N_{b}^{1 / 2} \phi_{k}}{\left(1+N_{k} \phi_{k}^{2}\right)^{1 / 2}}}{\stackrel{\text { BCS }}{ }} \Psi_{0}=\prod\left(v_{k}+v_{k} c_{k}^{l} c_{-k}^{+}\right)|0\rangle
$$

- Holland, Drummond et al. applied it to cold atom gases, with a molecular field.
- Levin et al. developed a MF theory, including bosonic degree of freedoms.

Wavefunction at Zero Temperature

BCS
$\psi_{0}=\prod_{k}\left(u_{k}+v_{k} c_{k}^{\dagger} c^{\dagger}-\mathrm{k}\right)|0\rangle$

BEC

Pauli Exclusion Principle $\quad \begin{aligned} & c_{k, \sigma}^{2}=0 \\ & c_{k, \sigma}^{+2}=0\end{aligned}$
Pauli Exclusion Principle $\quad \begin{array}{r}c_{k, \sigma}^{2}=0 \\ c_{k, \sigma}^{+2}=0\end{array}$

$$
\Psi_{0}=\exp \left[\sum_{k} v_{k} c_{k \uparrow}^{+} c_{-k \downarrow}^{+}\right] \quad v_{k}=N_{B}^{1 / 2} \phi_{k}
$$

$$
\left.\left|\Psi_{0}>=\exp \left(N_{B}^{1 / 2} \sum_{k} \phi_{k} c_{k k}^{+} c_{-k \downarrow}^{+}\right)\right| 0\right\rangle \quad b_{0}^{+}=\sum_{k} \phi_{k} c_{k \uparrow}^{+} c_{-k \downarrow}^{+}
$$

$$
\Psi_{0}=1+\sum_{k} v_{k} c_{k \uparrow}^{+} c_{-k \downarrow}^{+}+\frac{1}{2}\left(\sum_{k} v_{k} c_{k \uparrow}^{+} c_{-k \downarrow}^{+}\right)^{2}+\cdots+\frac{1}{n!}\left(\sum_{k} v_{k} c_{k \uparrow}^{+} c_{-k \downarrow}^{+}\right)^{n}
$$

$$
\left.\left|\Psi_{0}>=\exp \left(N_{B}^{1 / 2} b_{0}^{+}\right)\right| 0\right\rangle=|\alpha\rangle \quad \alpha=N_{B}^{1 / 2}
$$

(Leggett 1980): Surprisingly, at zero temperature both BEC and BCS can be described by a same class of wave function (i.e., the BCS wave function):
a smooth BCS-BEC crossover!

$$
\begin{gathered}
H=\sum_{k \sigma}\left(\varepsilon_{K}-\mu\right) c_{k \sigma}^{+} c_{k \sigma}+g \sum_{k_{1}, k_{2}, k_{3}, k_{4}} c_{k_{1} \uparrow}^{+} c_{-k_{2} \downarrow}^{+} c_{-k_{3} \downarrow} c_{k_{4} \uparrow} \\
\downarrow \\
\text { inter-atomic interaction }
\end{gathered}
$$

$$
\begin{aligned}
& \mu \text { chemical potentials } \\
& \begin{array}{l}
\epsilon_{\mathbf{k}}=\hbar^{2} \mathbf{k}^{2} / 2 m \\
k_{1}-k_{2}=k_{3}-k_{4}
\end{array}
\end{aligned}
$$

Mean Field Method

BCS

$\psi_{0}=\|\left(u_{k}+u_{k} c_{k} c_{-k}\right)|0\rangle$

Pauli Exclusion Principle

$$
\begin{aligned}
& c_{k, \sigma}^{2}=0 \\
& c_{k, \sigma}^{+2}=0
\end{aligned}
$$

$$
\begin{aligned}
& <\Psi_{0}\left|\Psi_{0}>=<0\right| \prod_{k_{1}} \chi_{k_{1}} \prod_{k_{2}} \chi_{k_{2}} \mid 0> \\
& =<0\left|\prod_{k}\left[1+\left|v_{k}\right|^{2} c_{-k \downarrow} c_{k \uparrow} \uparrow_{k \uparrow}^{+} c_{-k \downarrow}^{+}\right]\right| 0>=\prod_{k}\left[1+\left|v_{k}\right|^{2}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \left\langle\Psi_{0}\right| c_{k \sigma}^{+} c_{k \sigma} \mid \Psi_{0}>=\left.\langle 0| \prod_{k_{1}} \chi_{k_{1}} c_{k \sigma}^{+} c_{k \sigma} \prod_{k_{2}} \chi_{k_{2}}\left|0>=\sum_{k}\right| v_{k}\right|^{2} \prod_{k_{1} \neq k}\left|1+\left|v_{k}\right|^{2}\right] \\
& \chi_{k} c_{k \sigma}^{+} c_{k \sigma} \chi_{k}=c_{k \sigma}^{+} c_{k \sigma}+v_{k} c_{k \sigma}^{+} c_{k \sigma} c_{k \uparrow}^{+} \uparrow_{-k \downarrow}^{+}+v_{k} c_{-k \downarrow} c_{k \uparrow} c_{k \sigma}^{+} c_{k \sigma}+\left|v_{k}\right|^{2} c_{-k \downarrow} c_{k} \uparrow_{k \sigma}^{+} c_{k \sigma} c_{k \uparrow}^{+} c_{-k \downarrow}^{+} \\
& \left\langle\Psi_{0}\right| c_{k_{1}+}^{+} c_{-k_{2} \downarrow}^{+} c_{-k_{3} \downarrow} c_{k_{4} \uparrow} \mid \Psi_{0}>=v_{k 1} v_{k 4}\left[\delta_{k k_{2}}+\delta_{k k_{4}}\left|v_{k_{2}}\right|^{2}\right]_{k \neq k_{1}, k_{4}}\left[1+\left|\nu_{k}\right|^{2}\right]
\end{aligned}
$$

Mean Field Method

The Ground State Energy

$$
\langle H\rangle_{G S}=\frac{\left\langle\Psi_{0}\right| H\left|\Psi_{0}\right\rangle}{\left\langle\Psi_{0} \mid \Psi_{0}\right\rangle}=\sum_{k}\left(\varepsilon_{k}-\mu\right) \frac{2 v_{k}^{2}}{1+v_{k}^{2}}+g\left[\left(\sum_{k} \frac{v_{k}}{1+v_{k}^{2}}\right)^{2}+\left(\sum_{k} \frac{v_{k}^{2}}{1+v_{k}^{2}}\right)^{2}\right]
$$

The Minimization of the ground state energy with respect to $\mu \quad v_{k}$

$$
\frac{\partial}{\partial v_{k}}\langle H\rangle_{G S}=0
$$

$$
-\frac{\partial}{\partial \mu}\langle H\rangle_{G S}=\langle N\rangle
$$

Mean Field Method

$$
\begin{gathered}
-\frac{\partial}{\partial \mu}\langle H\rangle_{G S}=\langle N\rangle \\
\frac{\partial}{\partial v_{k}}\langle H\rangle_{G S}=0
\end{gathered}
$$

$$
\langle N\rangle=n_{\uparrow}+n_{\downarrow}=2 \sum_{k} \frac{v_{k}^{2}}{1+v_{k}^{2}}
$$

$$
2 v_{k}\left(\varepsilon_{k}-\mu+g \sum_{q} \frac{v_{q}^{2}}{1+v_{q}^{2}}\right)=-g\left(1-v_{k}^{2}\right) \sum_{q} \frac{v_{q}}{1+v_{q}^{2}}
$$

Introduce
The gap is order parameter

Hartree term

BCS quasiparticle energy

$$
\Delta=g \sum_{k}\left\langle c_{k \uparrow} c_{-k \downarrow}\right\rangle=g \sum_{k}\left\langle c_{-k}^{+} c_{k \uparrow}^{+}\right\rangle
$$

$$
U_{k}=\varepsilon_{k}-\mu+g y_{0}
$$

$$
E_{k}=\sqrt{U_{k}^{2}+\Delta^{2}}
$$

$$
v_{k}=\frac{E_{k}-U_{k}}{\Delta}
$$

$$
\frac{v_{k}^{2}}{1+v_{k}^{2}}=\frac{1}{2}\left(1-\frac{U_{k}}{E_{k}}\right)
$$

$$
\frac{V_{k}}{1+v_{k}^{2}}=\frac{\Delta}{2 E_{k}}
$$

Mean Field Method

$$
\begin{aligned}
& n=2 n_{\uparrow}=\sum_{k}\left(1-\frac{U_{k}}{E_{k}}\right) \\
& \frac{1}{g}=-\sum_{k} \frac{1}{2 E_{k}}
\end{aligned}
$$

inter-atomic interaction

The way in which the two body interaction g enters to characterize the scattering (in vacuum) is different from the way in which it enters to characterize the N -body processes leading to superfluidity.

$$
\frac{m}{4 \pi \hbar^{2} a_{s}} \equiv \frac{1}{g}+\sum_{k} \frac{1}{2 \varepsilon_{k}}
$$

Leggett model

$$
\begin{cases}1=\frac{4 \pi \hbar^{2} a}{m} \int \frac{d^{3} \mathbf{k}}{(2 \pi)^{3}}\left[\frac{1}{2 \varepsilon_{\mathbf{k}}}-\frac{1}{2 E_{\mathbf{k}}}\right], & \text { (gap equation) } \\ n=\int \frac{d^{3} \mathbf{k}}{(2 \pi)^{3}}\left(1-\frac{\varepsilon_{\mathbf{k}}-\mu}{E_{\mathbf{k}}}\right), & \text { (number equation) }\end{cases}
$$

note: $E_{\mathrm{k}}=\sqrt{\left(\varepsilon_{\mathrm{k}}-\mu\right)^{2}+\Delta^{2}}$, and the Hartree term is not included.

Mean Field Method

$$
H=\sum_{k \sigma}\left(\varepsilon_{K}-\mu\right) c_{k \sigma}^{+} c_{k \sigma}+g \sum_{k_{1}, k_{2}, k_{3}, k_{4}} c_{k_{4} \uparrow}^{+} c_{-k_{2} \downarrow}^{+} c_{-k_{3} \downarrow} c_{k_{4} \uparrow}
$$

Wick's theorem

$$
\begin{aligned}
\sum_{k_{1}, k_{2}, k_{3}, k_{4}} c_{k_{1} \uparrow}^{+} c_{-k_{2} \downarrow}^{+} c_{-k_{3} \downarrow} c_{k_{4} \uparrow}= & \sum_{k^{\prime} k}\left\langle c_{k^{\prime} \uparrow}^{+} c_{k^{\prime} \uparrow}\right\rangle c_{k \downarrow}^{+} c_{k \downarrow}+\sum_{k^{\prime} k}\left\langle c_{k^{\prime} \downarrow}^{+} c_{k^{\prime} \downarrow}\right\rangle c_{k \uparrow}^{+} c_{k \uparrow}-\sum_{k^{\prime} k}\left\langle c_{k^{\prime} \uparrow}^{+} c_{k^{\prime} \uparrow}\right\rangle\left\langle c_{k \downarrow}^{+} c_{k \downarrow}\right\rangle \\
& +\sum_{k^{\prime} k}\left\langle c_{k^{\prime} \uparrow}^{+} c_{-k^{\prime} \downarrow}^{+}\right\rangle c_{-k \downarrow} c_{k \uparrow}+\sum_{k^{\prime} k}\left\langle c_{-k^{\prime} \downarrow} c_{k^{\prime} \uparrow}\right\rangle c_{k \uparrow}^{+} c_{-k \downarrow}^{+}-\sum_{k^{\prime} k}\left\langle c_{k^{\prime} \uparrow}^{+} c_{-k^{\prime} \downarrow}^{+}\right\rangle\left\langle c_{-k \downarrow} c_{k \uparrow}\right\rangle
\end{aligned}
$$

Standard Bogoliubov Transformation

$$
\begin{array}{ll}
& \binom{\alpha_{k \uparrow}}{\alpha_{-k \downarrow}^{+}}=\left[\begin{array}{cc}
u_{k} & -v_{k} \\
v_{k} & u_{k}
\end{array}\right]\binom{c_{k \uparrow}}{c_{-k \downarrow}^{+}} \\
& \left\{\alpha_{k \sigma}, \alpha_{k^{\prime} \sigma^{\prime}}^{+}\right\}=\delta_{\mathrm{kk}} \delta_{\sigma \sigma^{\prime}} \\
\text { for Boson } & \Psi=\Phi+\tilde{\Psi} ; \tilde{\Psi}=\sum_{i}\left(u_{i} \alpha_{i}-v_{i} \alpha_{i}^{+}\right) ; \tilde{\Psi}^{+}=\sum_{i}\left(u_{i} \alpha_{i}^{+}-v_{i} \alpha_{i}\right)
\end{array}
$$

Mean Field Method

We take

$$
\begin{aligned}
& \cos \theta_{k}=u_{k} \\
& \sin \theta_{k}=v_{k}
\end{aligned}
$$

Off-Diagonal Term to Vanish

$$
\begin{gathered}
\tan 2 \theta_{k}=\frac{\Delta}{U_{K}} \\
\left\{\begin{array}{ll}
n_{\sigma}=\sum_{k}\left\langle c_{k \sigma}^{+} c_{k \sigma}\right\rangle=\frac{1}{2} \sum_{k}\left(1-\frac{U_{k}}{E_{k}}\right) \\
\frac{\Delta}{g}=\sum_{k}\left\langle a_{k \uparrow} a_{-k \downarrow}\right\rangle=-\sum_{k} \frac{\Delta}{2 E_{k}} \\
\begin{cases}1=\frac{4 \pi \hbar^{2} a}{m} \int \frac{d^{3} \mathbf{k}}{(2 \pi)^{3}}\left[\frac{1}{2 \varepsilon_{\mathbf{k}}}-\frac{1}{2 E_{\mathbf{k}}}\right], & \text { (gap equation) } \\
n=\int \frac{d^{3} \mathbf{k}}{(2 \pi)^{3}}\left(1-\frac{\varepsilon_{\mathbf{k}}-\mu}{E_{\mathbf{k}}}\right) . & \text { (number equation) }\end{cases}
\end{array} . \begin{array}{l}
\end{array}\right.
\end{gathered}
$$

Mean Field Method

Leggett model

$$
\begin{cases}1=\frac{4 \pi \hbar^{2} a}{m} \int \frac{d^{3} \mathbf{k}}{(2 \pi)^{3}}\left[\frac{1}{2 \varepsilon_{\mathbf{k}}}-\frac{1}{2 E_{\mathbf{k}}}\right], & \text { (gap equation) } \\ n=\int \frac{d^{3} \mathbf{k}}{(2 \pi)^{3}}\left(1-\frac{\varepsilon_{\mathbf{k}}-\mu}{E_{\mathbf{k}}}\right), & \text { (number equation) }\end{cases}
$$

note: $E_{\mathrm{k}}=\sqrt{\left(\varepsilon_{\mathrm{k}}-\mu\right)^{2}+\Delta^{2}}$, and the Hartree term is not included.

Mean Field Method: BEC limit

BEC Limit $\quad k_{F} a_{s} \rightarrow 0^{+}$

$$
\begin{aligned}
& \varepsilon_{F} \ll \Delta \ll \mu \\
& E_{k}=\sqrt{U_{k}^{2}+\Delta^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& E_{k}=\sqrt{U_{k}^{2}+\Delta^{2}} \\
& \left\{\begin{array}{l}
1=\frac{4 \pi \hbar^{2} a}{m} \int \frac{d^{3} \mathbf{k}}{(2 \pi)^{3}}\left[\frac{1}{2 \varepsilon_{\mathbf{k}}}-\frac{1}{2 E_{\mathbf{k}}}\right], \\
n=\int \frac{d^{3} \mathbf{k}}{(2 \pi)^{3}}\left(1-\frac{\varepsilon_{\mathbf{k}}-\mu}{E_{\mathbf{k}}}\right) . \\
\mu_{B}=2 \mu=-E_{b}+g_{B} n_{B}
\end{array}\right.
\end{aligned}
$$

$$
E_{k} \approx \varepsilon_{k}-\mu+\frac{\Delta^{2}}{2\left(\varepsilon_{k}-\mu\right)}
$$

$$
\Delta \cong \sqrt{16 /\left(3 \pi k_{F} a\right)} \varepsilon_{F}
$$

$$
\mu=-\frac{\hbar^{2}}{2 m a_{s}^{2}}+\frac{a_{s} \pi \hbar^{2}}{m} n
$$

$$
E_{b}=\frac{\hbar^{2}}{m a_{s}^{2}} \quad \longrightarrow \quad a_{B}=2 a_{F}
$$

Mean Field Method: BCS limit

BCS Limit

$$
\begin{aligned}
& k_{F} a_{s} \rightarrow 0^{-} \\
& \mu \approx E_{F} \quad \Delta \ll \mu
\end{aligned}
$$

We take cut off

$$
\begin{cases}1=\frac{4 \pi \hbar^{2} a}{m} \int \frac{d^{3} \mathbf{k}}{(2 \pi)^{3}}\left[\frac{1}{2 \varepsilon_{\mathbf{k}}}-\frac{1}{2 E_{\mathbf{k}}}\right], & \frac{\sqrt{\varepsilon_{k}}}{E_{k}} \approx \frac{1}{\sqrt{\varepsilon_{k}}+\sqrt{\mu^{\prime}}}+\frac{\sqrt{\mu^{\prime}}}{E_{k}} \\ n=\int \frac{d^{3} \mathbf{k}}{(2 \pi)^{3}}\left(1-\frac{\varepsilon_{\mathbf{k}}-\mu}{E_{\mathbf{k}}}\right) . & \mu^{\prime}=\mu-\frac{\Delta^{2}}{2\left(\varepsilon_{k}-\mu\right)}\end{cases}
$$

Order Parameter

$$
\Delta=\frac{8}{e^{2}} E_{F} e^{\frac{\pi}{2 a_{s} k_{F}}}
$$

Transition Temperature

$$
\frac{m}{4 \pi \hbar^{2} a_{s}}=\int \frac{d \vec{k}}{(2 \pi)^{3}}\left(\frac{1}{2 \varepsilon_{k}}-\frac{1}{2 E_{k}} t h \frac{E_{k}}{2 k_{B} T}\right) \quad T_{C}^{B C S}=\frac{8 e^{v}}{e^{2} \pi} T_{F} e^{\frac{\pi}{2 a_{s} k_{F}}} \quad(v=0.577)
$$

BCS superfluidity

Cooper pairs - BCS superfluidity

Tc~0 exponentially difficult to reach

$$
\left.T_{B C S} \approx 0.28 T_{F} e^{\frac{\pi}{2 k_{F} a_{s}}} \text { (valid for } k_{F}|a| \ll 1\right)
$$

$$
\text { e.g. : } k_{F} a=-0.2->T_{B C S} \sim 10^{-4} T_{F} \text { (very very small) }
$$

(very) low-temperature effect

Collective mode

Leggett model

$$
\begin{cases}1=\frac{4 \pi \hbar^{2} a}{m} \int \frac{d^{3} \mathbf{k}}{(2 \pi)^{3}}\left[\frac{1}{2 \varepsilon_{\mathbf{k}}}-\frac{1}{2 E_{\mathbf{k}}}\right], & \text { (gap equation) } \\ n=\int \frac{d^{3} \mathbf{k}}{(2 \pi)^{3}}\left(1-\frac{\varepsilon_{\mathbf{k}}-\mu}{E_{\mathbf{k}}}\right) & \text { (number equation) }\end{cases}
$$

note: $E_{\mathrm{k}}=\sqrt{\left(\varepsilon_{\mathrm{k}}-\mu\right)^{2}+\Delta^{2}}$, and the Hartree term is not included.
1

	BCS	unitary limit	BEC
$\mu(n)$	$\sim n^{2 / 3}$	$\sim n^{2 / 3}$	$\sim-\mathrm{E}_{b} / 2+g_{m} n$

Local Density Approximation

fix $\quad N, T$
$\mu \leftrightarrow n \quad$ EoS in Homogeneous System

$$
\mu(r)=\mu_{g}-V(r)
$$

$$
\begin{aligned}
& n(\mu)=n\left(\mu_{g}-\frac{1}{2} m \omega^{2} r^{2}\right) \\
& \mu_{g}: \text { determined by } \mathrm{N} \\
& N=\int d \vec{r} n(\vec{r})
\end{aligned}
$$

Leggett model: details

in the insets, from bottom to top, $x=-1.0,0.1,+0.5$ and +1.0 (for the curves)

Calculate collective mode frequencies

superfluid bydrodynamic equations

$$
\begin{aligned}
& \left\{\begin{array}{l}
\partial_{t} n+\nabla \cdot(n \mathbf{v})=0, \quad \text { (equation of continuity) } \\
m \partial_{t} \mathbf{v}+\nabla\left[\mu(n)+V_{\text {trap }}+m \mathbf{v}^{2} / 2\right]=0 . \quad \text { (Euler equation) }
\end{array}\right. \\
& \text { due to the trap } \\
& \text { pair phase fluctuations density oscillations }
\end{aligned}
$$

validity of hydrodynamic Eqs., see, M. A. Baranov et al., PRA 62, 041601(R) (2000)

Hydrodynamic Equation

scaling solutions of bydrodynamic Eqs.

$$
n(\mathbf{r}, t)=\frac{n_{0}\left(\frac{x}{b_{x}(t)}, \frac{y}{b_{y}(t)}, \frac{z}{b_{z}(t)}\right)}{\prod_{\alpha=x, y, z} b_{\alpha}(t)}, \quad v_{\alpha}(\mathbf{r}, t)=\frac{\dot{b}_{\alpha}(t) r_{\alpha}}{b_{\alpha}(t)}
$$

$\omega_{\perp, z}=\omega_{\perp, z}[1+\varepsilon \cos (\omega t)]$

$$
\delta n \sim Y_{00}(\theta, \phi) \quad+\quad \delta n \sim Y_{20}(\theta, \phi)
$$

$$
\omega_{ \pm}^{2} / \omega_{\perp}^{2}=1+\bar{\gamma}+(2+\bar{\gamma}) \lambda^{2} / 2
$$

$$
\pm \sqrt{\left[1+\bar{\gamma}+(2+\bar{\gamma}) \lambda^{2} / 2\right]^{2}-2(2+3 \bar{\gamma}) \lambda^{2}}
$$

Compare with Experimental Results

BCS mean field works well for all accessible fields at $\mathbf{T}=\mathbf{0}$

H. Hu, A. Minguzzi, X.-J. Liu, and M. P. Tosi, Phys. Rev. Lett. 93, 190403 (2004).

Experimental Results in 2007

BCS-BEC crossover gas: zero temperature

BCS mean field \longrightarrow well-understood, but qualitative!

Bloch, Dalibard and Zwerger RMP Vol 80, 885(2008)
Hui Hu, Xia-Ji Liu and P. D. Drummond, EPL 74, 574(2006)

High Temperature Virial Expansion

$\underline{\text { Xia-Ji Liu }}$

CAOUS, Swinburne University

Hawthorn, June.

Outline

- Virial expansion: A traditional but "new" method

- Few-particle exact solutions as the input to virial expansion
- Virial expansion: Applications

- Conclusions and outlooks

Global progress (experiment)

It is a central, grand challenge to theorists, due to the lack of small interaction parameter!

Virial expansion:
 A traditional but "new" method

Thermal fluctuation

ABC of virial expansion (VE)

$$
\frac{T}{T_{F}}
$$

$$
\begin{aligned}
& \mu(T, N)=-k_{B} T \ln \left[6\left(\frac{k_{B} T}{E_{F}}\right)^{3}\right] \\
& \mu \rightarrow-\infty
\end{aligned}
$$

The fugacity $\quad z=\exp \left(\mu / k_{B} T\right) \ll 1$

ABC of virial expansion (VE)

Thermodynamic potential

$$
\begin{array}{|ll|}
\hline \Omega(T, V, \mu)=-k_{B} T \ln Z_{G} & \begin{array}{l}
Z_{G}=\operatorname{Tr}\left(e^{-\beta\left(H_{0}-\mu V\right)}\right) \\
Z_{G}=\sum_{N} \sum_{j} e^{-\beta\left(E_{j}-\mu N\right)} \\
Z_{G}=1+z Q_{1}+z^{2} Q_{2}+z^{3} Q_{3} \cdots \\
\boldsymbol{N} \text {-cluster partition function: }
\end{array} \\
Q_{N}=\operatorname{Tr}_{N}\left[\exp \left(-\beta H_{N}\right)\right]
\end{array}
$$

$$
\begin{aligned}
& \ln (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}+\cdots \quad|x| \leq 1 \\
& \Omega=-k_{B} T Q_{1}\left(z+b_{2} z^{2}+b_{3} z^{3}+\cdots+b_{n} z^{n}+\cdots\right)
\end{aligned}
$$

Virial Coefficients $b_{2}=\left(Q_{2}-\frac{1}{2} Q_{1}^{2}\right) / Q_{1}, \quad b_{3}=\left(Q_{3}-Q_{1} Q_{2}+\frac{1}{3} Q_{1}^{3}\right), \quad b_{4}=\ldots$
To obtain b_{n}, just solve a "n-body" problem and find out the energy levels !

Numerically, we calculate $\Delta b_{n}=b_{n}-b_{n}^{(1)}$ for a trapped gas!
n-th virial coefficient of a non-interacting Fermi gas

ABC of virial expansion (VE)

What's new here?

For a homogeneous system, where the energy level is continuous, it seems impossible to calculate directly virial coefficient using N-cluster partition function, i.e., $b_{3}=\left(Q_{3}-Q_{1} Q_{2}+\frac{1}{3} Q_{1}^{3}\right), \ldots$

For the second virial coefficient, Beth \& Uhlenbeck (1937):

$$
\frac{\Delta b_{2}}{\sqrt{2}}=\sum_{i} \mathrm{e}^{-E_{b}^{i} /\left(k_{\mathrm{B}} T\right)}+\frac{1}{\pi} \int_{0}^{\infty} \mathrm{d} k \frac{\mathrm{~d} \delta_{0}}{\mathrm{~d} k} \mathrm{e}^{-\lambda^{2} k^{2} /(2 \pi)} \quad \begin{aligned}
& \delta_{0}: s \text {-wave phase shift; } \\
& \lambda: \text { de Broglie wavelength. }
\end{aligned}
$$

For the third coefficient, complicated diagrammatic calculations [Rupak, PRL 98, 090403 (2007)] :

The harmonic trap helps! The discrete energy level helps to calculate the N-cluster partition function.

How to obtain homogeneous virial coefficient?

Let us consider the unitarity limit and use LDA $[\mu(\mathbf{r})=\mu-V(\mathbf{r})]$,

$$
\begin{gathered}
\Omega_{\text {trap }} \propto \sum_{n=1} b_{n, T} z^{n} \propto \int d \mathbf{r} \sum_{n=1} b_{n, H} z^{n}(\mathbf{r})=\int d \mathbf{r} \sum_{n=1} b_{n, H} z^{n} \exp [-n \beta V(\mathbf{r})] \\
b_{n, T}(\text { trap })=\left[\frac{1}{n^{3 / 2}}\right] b_{n, H}(\text { homogeneou s })
\end{gathered}
$$

Validity of virial expansion? (unitarity case)

Non-trivial resummation of virial expansion terms? i.e. Páde approximation?

Unitary $\boldsymbol{z}(\boldsymbol{T})$ from the ENS data; see, HH, Liu \& Drummond, New. J. Pbys. 12, 063038 (2010).

Virial expansion of single-particle spectral function

$$
\begin{aligned}
& \begin{aligned}
G_{\sigma \sigma^{\prime}}\left(\mathbf{r}, \mathbf{r}^{\prime} ; \tau\right) & =-\exp [\mu \tau] \frac{1}{Z} \operatorname{Tr}\left[z^{\mathcal{N}} e^{-\beta \mathcal{H}} e^{\tau \mathcal{H}} \hat{\Psi}_{\sigma}(\mathbf{r}) e^{-\tau \mathcal{H}} \hat{\Psi}_{\sigma^{\prime}}^{+}\left(\mathbf{r}^{\prime}\right)\right] \\
& =A_{1}+z\left(A_{2}-A_{1} Q_{1}\right)+\cdots,
\end{aligned} \\
& \text { virial expansion functions: }
\end{aligned}
$$

$$
A_{N}=-\exp [\mu \tau] \operatorname{Tr}_{N-1}\left[e^{-\beta \mathcal{H}} e^{\tau \mathcal{H}} \hat{\Psi}_{\sigma}(\mathbf{r}) e^{-\tau \mathcal{H}} \hat{\Psi}_{\sigma^{\prime}}^{+}\left(\mathbf{r}^{\prime}\right)\right]
$$

To obtain A_{n}, solve a " n-body" problem and the wave functions!

$$
\text { HH, Liu, Drummond \& Dong, PRL 104, } 240407 \text { (2010). }
$$

Quantum virial expansion of DSF

$\begin{aligned} & \text { VE for dynamic } \\ & \text { susceptibility: }\end{aligned} \chi_{\sigma \sigma^{\prime}} \equiv-\frac{\operatorname{Tr}\left[e^{-\beta(\mathcal{H}-\mu \mathcal{N})} e^{\mathcal{H} \tau} \hat{n}_{\sigma}(\mathbf{r}) e^{-\mathcal{H} \tau} \hat{n}_{\sigma^{\prime}}\left(\mathbf{r}^{\prime}\right)\right]}{\operatorname{Tr} e^{-\beta(\mathcal{H}-\mu \mathcal{N})}}$

$$
\chi_{\sigma \sigma^{\prime}}\left(\mathbf{r}, \mathbf{r}^{\prime} ; \tau\right)=z X_{1}+z^{2}\left(X_{2}-X_{1} Q_{1}\right)+\cdots
$$

virial expansion functions: $X_{n}=-\operatorname{Tr}_{n}\left[e^{-\beta \mathcal{H}} e^{\tau \mathcal{H}} \hat{n}_{\sigma}(\mathbf{r}) e^{-\tau \mathcal{H}} \hat{n}_{\sigma^{\prime}}\left(\mathbf{r}^{\prime}\right)\right]$

Finally, we use $S_{\sigma \sigma^{\prime}}\left(\mathbf{r}, \mathbf{r}^{\prime} ; \omega\right)=-\frac{\operatorname{Im} \chi_{\sigma \sigma^{\prime}}\left(\mathbf{r}, \mathbf{r}^{\prime} ; i \omega_{n} \rightarrow \omega+i 0^{+}\right)}{\pi\left(1-e^{-\beta \omega}\right)}$

HH, Liu, \& Drummond, PRA 81, 033630 (2010).

Few-particle exact solutions: As the input to virial expansion

Blume, Daily, Stecher, Greene;
Busch, Englert, Rzazewski, Wilkens;
Werner, Castin;
Kestner, Duan;
Julienne, Bohn, Tiesinga;

Two-particle problem in harmonic traps

CM motion: $\left[-\frac{\hbar^{2}}{2 M} \Delta_{\vec{C}}+\frac{1}{2} M \omega^{2} C^{2}\right] \psi_{\mathrm{CM}}(\vec{C})=E_{\mathrm{CM}} \psi_{\mathrm{CM}}(\vec{C}), E_{\mathrm{CM}} \in\left(\frac{3}{2}+\mathbb{N}\right) \hbar \omega$
Relative motion: $\left[-\frac{\hbar^{2}}{2 \mu} \nabla_{\mathbf{r}}^{2}+\frac{1}{2} \mu \omega^{2} r^{2}\right] \psi_{2 b}^{\mathrm{rel}}(\mathbf{r})=E_{\text {rel }} \psi_{2 b}^{\mathrm{rel}}(\mathbf{r}), \psi_{2 b}^{\mathrm{rel}}(r) \rightarrow(1 / r-1 / a)$ BP condition
The solution: $\left\{\begin{array}{l}\psi_{2 b}^{\text {rel }}(r ; v)=\Gamma(-v) U\left(-v, \frac{3}{2}, \frac{r^{2}}{d^{2}}\right) \exp \left(-\frac{r^{2}}{2 d^{2}}\right) \\ U \text { is the second Kummer function } \\ E_{\text {rel }}=\left(2 v+\frac{3}{2}\right) \hbar \omega \text { is determined from the BP condition }\end{array}\right.$
See, Busch et al., Found. Pbys. (1998)

Two-particle problem in harmonic traps

Analytic result is known at unitarity: $E_{\mathrm{rel}}=\left(2 n+\frac{1}{2}\right) \hbar \omega, n \in \mathbb{N}$. [See, Busch et al., Found. Phys. (1998)]

$$
b_{2}-b_{2}^{(1)}=\left(Q_{2}-Q_{2}^{(1)}\right) / Q_{1}=\frac{1}{2}\left[\sum_{n} \exp \left(-\beta E_{r e l, n}\right)-\sum_{n} \exp \left(-\beta E_{r e l, n}^{(1)}\right)\right]=\left(\frac{1}{4}\right) \frac{2 \exp (-\beta \hbar \omega / 2)}{1+\exp (-\beta \hbar \omega)}
$$

Three-particle problem in harmonic traps

$$
\begin{array}{ll}
\text { In general: } & \psi(\vec{r}, \vec{\rho})=\left(\hat{\mathbf{1}}-\hat{\mathbf{P}}_{13}\right) \sum_{n} a_{n} \phi_{n l}(\rho) Y_{l m}(\hat{\rho}) \Gamma\left(-v_{n}\right) U\left(-v_{n}, \frac{3}{2} ; r^{2}\right) \exp \left(-\frac{r^{2}}{2}\right) Y_{00}(\hat{r}) \\
\left(\boldsymbol{P}_{13}: \text { particle exchange operator }\right) & {\left[\left(2 n+l+\frac{3}{2}\right)+\left(2 v_{n}+\frac{3}{2}\right)\right] \hbar \omega=E_{r e l}} \\
& \text { is determined from the BP condition }
\end{array}
$$

Liu, HH \& Drummond, PRA 82, 023619 (2010)

Three-particle problem in harmonic traps

Relative energy levels " E " as a function of the inverse scattering length ($l=1$ section).

Three-particle problem at unitarity

$$
\begin{aligned}
& R=\sqrt{\frac{r^{2}+\rho^{2}}{2}}, \quad \vec{\Omega}=(\alpha, \hat{r}, \hat{\rho}) \quad \text { Separable wavefunctions ! } \\
& \alpha=\arctan \left(\frac{r}{\rho}\right) \\
& \psi(R, \vec{\Omega})=\frac{F(R)}{R^{2}}\left(1-\hat{P}_{13}\right) \frac{\varphi(\alpha)}{\sin (2 \alpha)} Y_{l}^{m}(\hat{\rho}) \\
& \text { See, Werner \& Castin, PRL (2000): } E_{r e l}=1+2 q+s_{1 n} \\
& b_{3}-b_{3}^{(1)}=\frac{Q_{3}-Q_{3}^{(1)}}{Q_{1}}-\left(Q_{2}-Q_{2}^{(1)}\right)=\frac{e^{-\beta h o}}{1-e^{-2 \beta h o}} \sum_{l, n}(2 l+1)\left[\exp \left(-\beta \hbar \omega s_{\text {ln }}\right)-\exp \left(-\beta \hbar \omega s_{1 n}^{(1)}\right)\right), \\
& \text { Numerically, } b_{3}-b_{3}^{(1)}=-0.06833960+0.038867\left(\frac{\hbar \omega}{k_{B} T}\right)^{2}-0.0135\left(\frac{\hbar \omega}{k_{B} T}\right)^{4}+\ldots
\end{aligned}
$$

Virial expansion: Applications

Virial coefficient at unitarity (uniform case)

We now comment the main features of the equation of state. At high temperature, the EOS can be expanded in powers of ζ^{-1} as a virial expansion [11]:
$h[\zeta]=\frac{P(\mu, T)}{P^{(1)}(\mu, T)}=\frac{\sum_{k=1}^{\infty}\left((-1)^{k+1} k^{-5 / 2}+b_{k}\right) \zeta^{-k}}{\sum_{k=1}^{\infty}(-1)^{k+1} k^{-5 / 2} \zeta^{-k}}$,
where b_{k} is the $k^{\text {th }}$ virial coefficient. Since we have $b_{2}=$ $1 / \sqrt{2}$ in the measurement scheme described above, our data provides for the first time the experimental values of b_{3} and $b_{4} \cdot b_{3}=-0.35(2)$ is in excellent agreement with the recent calculation $b_{3}=-0.291-3^{-5 / 2}=-0.355$ from [11] but not with $b_{3}=1.05$ from [12]. $b_{4}=0.096(15)$ involves the 4 -fermion problem at unitarity and could interestingly be computed along the lines of [11].

Nascimbène et al., Nature, 25 February 2010.

$$
\Delta b_{2}=1 / \sqrt{2} \quad(\text { known } 70 \mathrm{~s} \text { ago })
$$

$$
\begin{aligned}
& \sqrt{ } \Delta b_{3}(\text { Liu et al. }) \approx-0.35510298 \quad(P R L 2009) \\
& \times \Delta b_{3}(\text { Rupak }) \approx 1.05 \quad(P R L 2007)
\end{aligned}
$$

VE applications (EoS)

Unitary EoS at high T: trapped case

Here,

$$
\begin{aligned}
& \Delta b_{2}=1 / \sqrt{2} \\
& \Delta b_{3} \approx-0.35510298 \\
& \Delta b_{4}(\text { ENS }) \approx 0.096(15)
\end{aligned}
$$

Expt. data:
Calculated from $b(\zeta)$ of ENS's Unitarity EoS

1 beory data:
HH et al., New J. Phys. 12, 063038 (2010).

Trapped spectral function (second order only)

Expt: JILA,
Nature Pbysics (2010).

Theory: HH et al.,
PRL 104, 240407 (2010).

Trapped dynamic structure factor (second order only)

$$
S(k, \omega)=S^{(1)}(k, \omega)+z^{2} S_{2}(k, \omega)+\cdots
$$

Expt:: Kuhnle, Hoinka, Dyke, HH, Hannaford \& Vale, PRL, 106170402 (2011).
Theory: HH, Liu, \& Drummond, PRA 81, 033630 (2010).

VE applications (Tan's contact)

The finite- T contact may be calculated using adiabatic relation: $\left[\frac{\partial \Omega}{\partial a_{s}^{-1}}\right]_{T, \mu}=-\frac{\hbar^{2}}{4 \pi m}$ I (high-T regime) Recall that the virial expansion for thermodynamic potential,

$$
\Omega=\Omega^{(1)}-\frac{2 k_{B} T}{\lambda_{d B}^{3}}\left[\Delta b_{2} z^{2}+\Delta b_{3} z^{3}+\cdots\right]
$$

Using the adiabatic relation, it is easy to see that,

$$
\mathbf{I}_{\text {virial }}=\frac{4 \pi m}{\hbar^{2}} \frac{2 k_{B} T}{\lambda_{d B}^{2}}[\underbrace{\frac{\partial \Delta b_{2}}{\partial\left(\lambda_{d B} / a_{s}\right.}}_{\boldsymbol{c}_{2}} z^{2}+\underbrace{\frac{\partial \Delta b_{3}}{\partial\left(\lambda_{d B} / a_{s}\right)}}_{\boldsymbol{c}_{3}} z^{3}+\cdots]
$$

At the unitarity limit, we find that, $c_{2}=1 / \pi$ and $c_{3} \approx-0.141$. () to be used as a benchmark!

Note that,

$$
c_{n}(\text { trap })=\left(1 / n^{3 / 2}\right) c_{n}(\text { homo })
$$

Hu, Liu \& Drummond, NJP 13, 035007(2011).

Trapped contact at unitarity (theory vs experiment)

Expt:: Kuhnle, Hoinka, Dyke, HH, Hannaford \& Vale, PRL, 106170402 (2011).
Theory: HH, Liu \& Drummond, arXiv:1011.3845; NJP (2011).

Virial expansion solves completely the large- T strong-correlated problem!

. 4th order virial coefficient: experiment $\Delta b_{4} \approx 0.096$ and theory $\Delta b_{4} \approx-0.016$

- Can we improve $A(k, \omega)$ and $S(k, \omega)$ to the 3 rd and 4th order?

Daily \& Blume;
i.e., based on the 3 - and 4-body solutions by Stecher \& Greene;

Werner \& Castin;
......

- Efimov physics or triplet pairing response in $A(k, \omega)$ and $S(k, \omega)$?

